Постановка задачи линейного программирования
Найти максимум функции
при ограничениях:
Такая форма задачи линейного программирования называется канонической формой.
Не ограничивая общности, можем считать, что все числа Этого можно добиться, умножая ограничения, где на -1.
Множество допустимых решений задачи
X = { }
есть выпуклое множество, которое геометрически представляет собой выпуклый многогранник, имеющий конечное число крайних точек.
Крайней точкой выпуклого множества X называется точка X, которая не может быть выражена в виде выпуклой комбинации других точек X, .
Множество крайних точек многогранника X соответствует множеству допустимых базисных решений системы, и при этом одному базисному решению соответствует одна крайняя точка многогранника.
Если функция в задаче линейного программирования достигает максимума на многограннике X, определяемом ограничениями, то она достигает его по крайней мере в одной крайней точке этого многогранника. Если она достигает его в нескольких крайних точках, то она достигает его на любой выпуклой комбинации этих крайних точек. Это утверждение определяет стратегию решения задачи, реализованную с помощью симплекс-метода, т. е. направленный перебор базисных решений, определяющих крайние точки многогранника. Направленность перебора предполагает следующую организацию вычислительного процесса.
1. Определение начального базисного решения.
2. Переход от одного базисного решения к другому таким образом, чтобы обеспечить возрастание целевой функции .
2.2. Задача безусловной оптимизации
Общая постановка задачи безусловной оптимизации представляется следующим образом.
Дана дважды непрерывно дифференцируемая функция , определенная на множестве . Требуется исследовать функцию на экстремум, т. е. определить точки ее локальных минимумов и максимумов.
Подавляющее большинство численных методов оптимизации относится к классу итерационных, т. е. порождающих последовательность точек в соответствии с предписанным набором правил, включающим критерий окончания. При заданной начальной точке методы генерируют последовательность Преобразование точки в представляет собой -ую итерацию.
Для определенности рассмотрим задачу поиска безусловного локального минимума:
Численное решение этой задачи, как правило, связано с построением последовательности { } точек, обладающих свойством убывания целевой функции:
Общее правило построения последовательности { }имеет вид где точка - начальная точка поиска; - приемлемое направление перехода из точки в точку обеспечивающее выполнение свойства убывания целевой функции и называемое направлением спуска; - величина шага.
Начальная точка поиска задается исходя из физического содержания решаемой задачи и наличия априорной информации о положении точек экстремума.
Приемлемое направление спуска должно удовлетворять условию = 0, 1,...,
где - градиент непрерывно-дифференцируемой функции в точке , обеспечивающему убывание целевой функции . Примером приемлемого направления спуска является направление вектора антиградиента: .
Величина шага выбирается либо из свойства убывания целевой функции, либо из условия минимума целевой функции вдоль направления спуска: