Причины многообразия неорганических и органических веществ; взаимосвязь веществ.





2Получение спиртов из предельных и непредельных углеводородов. Промышленный синтез метанола.

3. О п ы т. Осуществление превращений: соль - нерастворимое основание - оксид металла.

Серная кислота при нагревании взаимодействует с оксидом меди(II). Ионы Cu2+переходят в раствор и придают ему голубую окраску.

CuO + H2SO4 = СuSO4 (соль сульфат меди)+ H2O,

CuO + 2H+ = Сu2+ + H2O.

Прибавляют к фильтрату раствор щелочи, наблюдается выпадение голубого осадка:

CuSO4 + 2NaOH = Cu(OH)2 (нерастворимый оксид меди)+ Na2SO4,

Cu2+ + 2OH = Cu(OH)2 .

при нагревании голубого осадка гидроксида меди (II) образуются вещество чёрного цвета – это оксид меди (II) и вода:
Cu(OH)2 = CuO + H2O

 

 

БИЛЕТ 24

1. Высшие кислородсодержащие кислотахимических элементов третьего периода,их состав и сравнительная характеристика свойств.

Фосфор образует целый ряд кислородсодержащих кислот (оксокислот). Некоторые из них мономерны. например фосфиновая, фосфористая и фосфорная(V) (ортофосфорная) кислоты. Кислоты фосфора могут быть одноосновными (однопротонными) либо многоосновными (многопротонными). Кроме того, фосфор образует еще полимерные оксокислоты. Такие кислоты могут иметь ациклическое либо циклическое строение. Например, дифосфорная(V) (пирофосфорная) кислота представляет собой димерную оксокислоту фосфора.

Наиболее важной из всех этих кислот является фосфорная(V) кислота (другое ее название - ортофосфорная кислота). При нормальных условиях она представляет собой белое кристаллическое вещество, расплывающееся при поглощении влаги из воздуха. Ее 85%-ный водный раствор называют «сиропообразной фосфорной кислотой». Фосфорнця(V) кислота является слабой трехосновной кислотой:

Хлор образует несколько кислородсодержащих кислот. Чем выше степень окисления хлора в этих кислотах, тем выше их термическая устойчивость и сила кислоты:

НОCl < НСlO2 < НСlO3 < НClO4

НClO3 и НClO4 – сильные кислоты, причем НСlO4 – одна из самых сильных среди всех известных кислот. Остальные две кислоты лишь частично диссоциируют в воде и существуют в водном растворе преимущественно в молекулярной форме. Среди кислородсодержащих кислот хлора только НСlO4 удается выделить в свободном виде. Остальные кислоты существуют только в растворе.

Окислительная способность кислородсодержащих кислот хлора уменьшается с возрастанием его степени окисления:

НОСl и НClO2 – особенно хорошие окислители. Например, кислый раствор НОCl:

1) окисляет ионы железа (II) до ионов железа (III):

2) на солнечном свету разлагается с образованием кислорода:

3) при нагревании приблизительно до 75 °С он диспропорционирует на хлорид-ионы и хлорат (V)-ионы:

Остальные высшие кислотсодержащие кислоты элементов третьего периода (H3AlO3, H2SiO3) более слабые, чем фосфорная кислота. Серная кислота (H2SO4) менее сильнае, чем хлорная (VII) кислота, но более сильная, чем фосфорная кислота. Вообще, при увеличении степени окисления элемента, образующего кислоту, увеличивается сила самой кислоты:

H3AlO3 < H2SiO3 < H3PO4 < H2SO4 < НСlO4

2. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена или синтетического каучука).



3. 3 а д а ч а. Вычисление массы исходного вещества, если известен практический выход продукта и указана массовая доля его (в процентах) от теоретически возможного выхода.

Задача. Определите массу карбоната магния, прореагировавшего с соляной кислотой, если при этом получено 8,96 л оксида углерода (IV), что составляет 80% от теоретически возможного выхода.

 

Билет №25.

Общие способы получения металлов. Практическое значение электролиза на примере солей бескислородных кислот.

Металлы находятся в природе преимущественно в виде соеди­нений. Только металлы с малой химической активностью (благо­родные металлы) встречаются в природе в свободном состоянии (платиновые металлы, золото, медь, серебро, ртуть). Из кон­струкционных металлов в достаточном количестве имеются в природе в виде соединений лишь железо, алюминий, магний. Они образуют мощные залежи месторождений относительно бо­гатых руд. Это облегчает их добычу в больших масштабах.

Поскольку металлы в соединениях находятся в окисленном состоянии (имеют положительную степень окисления), то полу­чение их в свободном состоянии сводится к процессу восста­новления:

Этот процесс можно осуществить химическим или электро­химическим путем.

При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (II), а также водород, активные металлы, кремний. С помощью оксида углерода (II) получают железо (в доменном процессе), многие цвет­ные металлы (олово, свинец, цинк и др.):

Восстановление водородом используется, например, для по­лучения вольфрама из оксида вольфрама (VI):

Применение в качестве восстановителя водорода обеспечивает наибольшую чистоту получаемого металла. Водород используют для получения очень чистого железа, меди, никеля и других ме­таллов.

Способ получения металлов, в котором в качестве восста­новителя применяют металлы, называют металлотермическим. В этом способе в качестве восстановителя используют активные металлы. Примеры металлотермических реакций:

алюминотермия:

магниетермия:

Металлотермические опыты получения металлов впервые осу­ществил русский ученый Н. Н. Бекетов в XIX в.

Металлы наиболее часто получают восстановлением их окси­дов, которые в свою очередь выделяют из соответствующей при­родной руды. Если исходной рудой являются сульфидные мине­ралы, то последние подвергают окислительному обжигу на­пример:

Электрохимическое получение металлов осуществляется при электролизе расплавов соответствующих соединений. Таким путем получают наиболее активные металлы, щелочные и ще­лочноземельные металлы, алюминий, магний.

Электрохимическое восстановление применяют также для ра­финирования (очистки) «сырых» металлов (меди, никеля, цинка и др.), полученных другими способами. При электролитическом рафинировании в качестве анода используют «черновой» (с при­месями) металл, в качестве электролита — раствор соединений данного металла.

Способы получения металлов, осуществляемые при высоких температурах, называют пирометаллургическими(по-гречески pyr — огонь). Многие из этих способов известны с древних времен. На рубеже XIX—XX вв. начинают развиваться гидро­металлургические способы получения металлов (по-гречески hydor—вода). При этих способах компоненты руды переводят в водный раствор и далее выделяют металл электролитическим или химическим восстановлением. Так получают, например, медь. Медную руду, содержащую оксид меди (II) CuО, обрабатывают разбавленной серной кислотой:

Для восстановления меди полученный раствор сульфата меди (II) либо подвергают электролизу, либо действуют на раствор порошком железа.

Гидрометаллургический способ имеет большое будущее, так как позволяет получать продукт, не извлекая руду из земли.

2. Виды синтетических каучуков, их свойства и применение.





3. О п ы т. Получение названного газообразного вещества и проведение реакций, характеризующих его свойства; (углекислого газа)

С02 — это типичный кислотный оксид: взаимодействует со щелочами (например, вызывает помутнение известковой воды), с основными оксидами и водой.

Углекислый газ получают, действуя на соли угольной кислоты — карбонаты растворами соляной, азотной и даже уксусной кислот. В лаборатории углекислый газ получают при действии на мел или мрамор соляной кислоты:

СаС03 + 2НСl = СаСl2 + Н20 + С02 это углекислый газ

В промышленности большие количества углекислого газа получают обжигом известняка:

СаС03 = СаО + СO2

Химические реакции с углекислым газом

При растворении оксида углерода(IV) в воде образуется угольная кислота Н2С03, которая очень нестойкая и легко разлагается на исходные компоненты — углекислый газ и воду:

CO2 + Н20 —> H2CO3

Он не горит и не поддерживает горения (рис. 44) и потому применяется для тушения пожаров. Однако магний продолжает гореть в углекислом газе с образованием оксида и выделением углерода в виде сажи:

С02 + 2Мg = 2МgO + С