Теоретическое введение

Жидкому состоянию вещества, в отличие от твердого и газообразного, присуще поверхностное натяжение, обуслов­ленное тем, что молекулы, расположенные на поверхности жидкости, находятся в особом состоянии. Рассмотрим это явление более подробно.

Каждая молекула внутри жидкости взаимодействует с окружающими её молекулами, находящимися от неё на сравнительно небольших расстояниях, в пределах сферы молекулярного действия, радиус которой всего лишь в несколько раз больше радиуса самой молекулы. Взаимодействие с остальными молекулами настолько мало, что им можно пренебречь. Молекулы, находящиеся в сфере молекулярного действия данной молекулы, действуют на неё с силами, направления которых во все стороны равновероятны, и равнодействующая которых, следовательно, равна нулю.

Если же данная молекула расположена на поверхности жидкости, то на неё практически действуют только те молекулы, которые находятся в нижней половине сферы молекулярного действия, и равнодействующая всех молекулярных сил направлена внутрь жидкости нормально к её поверхности. Таким образом, на все молекулы, расположенные в поверхностном слое, действуют силы, стремящиеся втянуть эти молекулы внутрь жидкости, и поверхностный слой оказывает на внутренние слои жидкости молекулярное давление, величина которого велика (для воды, например, примерно 109 Па). Наличие этого давления объясняет практическую несжимаемость жидкости.

При переходе молекул изнутри на поверхность они должны совершить работу против направленных внутрь жидкости сил притяжения со стороны остающихся внутри молекул. Эта работа идет на увеличение потенциальной энергии молекул, переходящих в поверхностный слой. Отсюда следует, что поверхностные молекулы, а следовательно, и весь поверхностный слой, обладают дополнительной потенциальной энергией, которая носит название поверхностной энергии.

Как известно из курса механики, устойчивое равновесие любой системы возможно лишь тогда, когда потенциальная энергия этой системы имеет минимально-возможное значение. Поэтому жидкость, предоставленная самой себе, будет стремиться к такому состоянию, при котором её поверхностная энергия, а стало быть, и величина поверхности, будут минимальными. Такой поверхностью при заданном объеме является поверхность шара, и как показывают опыты, проводившиеся космонавтами в условиях невесомости, жидкость при этом действительно принимает форму шара. В земных условиях форма жидкости всегда соответствует минимуму суммарной гравитационной и поверхностной энергий и всегда обнаруживает стремление к сокращению своей поверхности, т.е.ведет себя так, как если бы она была заключена в своеобразную упругую растянутую пленку. Если мысленно провести в поверхностном слое произвольную линию, то силы, растягивающие пленку.ю силы поверхностного натяжения, действуют нормально к этой линии и направлены по касательной к поверхности жидкости.

Для количественной ха­рактеристики силы поверхностного натяжения вводится по­нятие коэффициента поверхностного натяжения σ, который численно равен силе F, действующей на единицу длины про­извольной линии, проведенной на поверхности жидкости:

 

σ = F (1)
L

 

Из формулы (1) видно, что коэффициент поверхностного натяжения (сокращенно КПН) в СИ измеряется в Н/м.

Величина коэффициента поверхностного натяжения зави­сит от природы жидкости, от растворенных в ней веществ и от температуры. С повышением температуры различие в плотностях жидкости и ее насыщенного пара уменьшается, и коэффициент поверхностного натяжения также уменьшается. При критической температуре он становится равным нулю.