Многоуровневые драйверы
Первоначально термин «драйвер» применялся в достаточно узком смысле: под драйвером понимался программный модуль, который:
· входит в состав ядра операционной системы, работая в привилегированном режиме;
· непосредственно управляет внешним устройством, взаимодействуя с его контроллером с помощью команд ввода-вывода компьютера;
· обрабатывает прерывания от контроллера устройства;
· предоставляет прикладному программисту удобный логический интерфейс работы с устройством, экранируя от него низкоуровневые детали управления устройством и организации его данных;
· взаимодействует с другими модулями ядра ОС с помощью строго оговоренного интерфейса, описывающего формат передаваемых данных, структуру буферов, способы включения драйвера в состав ОС, способы вызова драйвера, набор общих процедур подсистемы ввода-вывода, которыми драйвер может пользоваться, и т. п.
Согласно этому определению драйвер вместе с контроллером устройства и прикладной программой воплощали идею многослойного подхода к организации программного обеспечения. Контроллер представлял нижний слой управления устройством, выполняющий операции в терминах блоков и агрегатов устройства (например, передвижение головки дисковода, побитную передачу байта по двухпроводному кабелю). Драйвер выполнял более сложные операции, преобразуя, например, данные, адресуемые в терминах номеров цилиндров, головок и секторов диска, в линейную последовательность блоков или устанавливая логическое соединение между двумя модемами через телефонную сеть. В результате прикладная программа уже работала с данными, преобразованными в достаточно понятную для человека форму, – файлами, таблицами баз данных, текстовыми окнами на мониторе и т. п., не вдаваясь в детали представления этих данных в устройствах ввода-вывода. Кроме того, помещение драйвера в привилегированный режим и запрет для пользовательских процессов выполнять операции ввода-вывода защищают критически важные для работы самой ОС устройства ввода-вывода от ошибок прикладных программ, а также позволяют ОС надежно контролировать процесс разделения устройств и их данных между пользователями и процессами.
В описанной схеме драйверы не делились на слои. При этом они выполняли задачи разного уровня сложности: как самые примитивные, например, просто последовательно передавали контроллеру байты для дальнейшего использования, так и достаточно сложные, связанные с отработкой протокола взаимодействия между модемами или вычерчиванием на экране математических кривых.
Постепенно, по мере развития операционных систем и усложнения структуры подсистемы ввода-вывода, наряду с традиционными драйверами в операционных системах появились так называемые высокоуровневые драйверы, которые располагаются в общей модели подсистемы ввода-вывода над традиционными драйверами. Появление высокоуровневых драйверов можно считать дальнейшим развитием идеи многослойной организации подсистемы ввода-вывода. Вместо того чтобы концентрировать все функции по управлению устройством в одном программном модуле, во многих случаях гораздо эффективней распределить их между несколькими модулями в соседних слоях иерархии. Традиционные драйверы которые стали называть аппаратнымидрайверами, низкоуровневыми драйверами, или драйверами устройств, подчеркивая их непосредственную связь с управляемым устройством, освобождаются от высокоуровневых функций и занимаются только низкоуровневыми операциями. Эти низкоуровневые операции составляют фундамент, на котором можно построить тот или иной набор операций вдрайверах более высоких уровней.
При таком подходе повышается гибкость и расширяемость функций по управлению устройством - вместо жесткого набора функций, сосредоточенных в единственном драйвере, администратор ОС может выбрать требуемый набор функций, установив нужный высокоуровневый драйвер. Если различным приложениям необходимо работать с различными логическими моделями одного и того же физического устройства, то для этого достаточно установить в системе несколько драйверов на одном уровне, работающих над одним аппаратным драйвером.
Количество уровней драйверов в подсистеме ввода-вывода обычно не ограничивается каким-либо пределом, но на практике чаще всего используют от двух до пяти уровней драйверов - слишком большое количество уровней может снизить скорость операций ввода-вывода. Несколько драйверов, управляющих одним устройством, но на разных уровнях, можно рассматривать как набор отдельных драйверов или как один многоуровневый драйвер.
Высокоуровневые драйверы оформляются по тем же правилам и придерживаются тех же внутренних интерфейсов, что и аппаратные драйверы. Единственным отличием является то, что высокоуровневые драйверы, как правило, не вызываются по прерываниям, так как взаимодействуют с управляемым устройством через посредничество аппаратных драйверов. Менеджер ввода-вывода управляет драйверами однотипно, независимо от того, к какому уровню он относится. При наличии большого количества драйверов разного уровня усложняются связи между ними, что, в свою очередь, усложняет их взаимодействие, и именно эта ситуация привела к стандартизации внутреннего интерфейса в подсистеме ввода-вывода и выделения специальной оболочки в виде менеджера ввода-вывода, выполняющего служебные функции по организации работы драйверов.
Рассмотрим, как общие принципы построения многоуровневых драйверов могут быть реализованы при управлении определенными типами внешних устройств.
В подсистеме управления дисками аппаратные драйверы поддерживают для верхних уровней представление диска как последовательного набора блоков одинакового размера, преобразуя вместе с контроллером номер блока в более сложный адрес, состоящий из номеров цилиндра, головки и сектора. Однако такие понятия, как «файл» и «файловая система», аппаратные драйверы дисков не поддерживают – эти удобные для пользователя и программиста логические абстракции создаются на более высоком уровне программным обеспечением файловых систем, которое в современных ОС также оформляется как драйвер, только высокоуровневый. Наличие универсальной среды, создаваемой менеджером ввода-вывода, позволяет достаточно просто решить проблему поддержки в ОС нескольких файловых систем одновременно. Для этого в ОС устанавливается несколько высокоуровневых драйверов (на рисунке это драйверы файловых систем ufs, FAT, и NTFS), работающих с общими аппаратными драйверами, но по-своему организующими хранение данных в блоках диска и по-своему представляющими файловую систему пользователю и прикладным процессам. Для унификации представления различных файловых систем в подсистеме ввода-вывода может использоваться общий драйвер верхнего уровня, играющий роль диспетчера нескольких драйверов файловых систем. На рисунке в качестве примера показан диспетчер VFS (Virtual File System), применяемый в операционных системах UNIX, реали- зованных на основе кода System V Rе1еаве 4.
Необязательно все модули подсистемы ввода-вывода оформляются в виде драйверов. Например, в подсистеме управлениями дисками обычно имеется такой модуль, как дисковый кэш, который служит для кэширования блоков дисковых файлов в оперативной памяти. Достаточно специфические функции кэша делают нецелесообразным оформление его в виде драйвера, взаимодействующего с другими модулями ОС только с помощью услуг менеджера ввода-вывода. Другим примером модуля, который чаще всего не оформляется, является диспетчер окон графического интерфейса. Иногда этот модуль вообще выносится из ядра ОС и реализуется в виде пользовательского процесса. Таким образом был реализован диспетчер окон (а также высокоуровневые графические драйверы) в Windows NT 3.5 и 3.51, но этот микроядерный подход заметно замедлял графические операции, поэтому в Windows NT 4.0 диспетчер окон и высокоуровневые графические драйверы, а также графическая библиотека GDI были перенесены в пространство ядра.
Аппаратные драйверы после запуска операции ввода-вывода должны своевременно реагировать на завершение контроллером заданного действия, и для решения этой задачи они взаимодействуют с системой прерываний. Драйверы более выcоких уровней вызываются уже не по прерываниям, а по инициативе аппаратных драйверов или драйверов вышележащего уровня. Не все процедуры аппаратного драйвера нужно вызывать по прерываниям, поэтому драйвер обычно имеет определенную структуру, в которой выделяется секция обработки прерываний (Interrupt Service Routine - ISR), которая и вызывается при поступлении запроса от соответствующего устройства диспетчером прерываний. Диспетчер прерываний можно считать частью подсистемы ввода-вывода, как это показано на рис. 1, а можно считать и независимым модулем ядра ОС, так как он служит не только для вызова секций обработки прерываний драйверов, но и для диспетчеризации прерываний других типов.
В унификацию драйверов большой вклад внесла операционная система UNIX. В ней все драйверы были разделены на два больших класса: блок-ориентированные (block-oriented) драйверы и байт-ориентированные (character-oriented) драйверы. Это деление является более общим, чем деление на вертикальные подсистемы. Например, драйверы графических устройств и драйверы сетевых устройств относятся к классу байт-ориентированных.
Блок-ориентированные драйверы управляют устройствами прямого доступа, которые хранят информацию в блоках фиксированного размера, каждый из которых имеет собственный адрес. Самое распространенное внешнее устройство прямого доступа - диск. Адресуемость блоков приводит к тому, что для устройств прямого доступа появляется возможность кэширования данных в оперативной памяти, и это обстоятельство значительно влияет на общую организацию ввода- вывода для блок-ориентированных драйверов.
Устройства, с которыми работают байт-ориентированные драйверы, не адресуемы и не позволяют производить операцию поиска данных, они генерируют или потребляют последовательности байт. Примерами таких устройств, которые также называют устройствами последовательного доступа, служат терминалы, строчные принтеры, сетевые адаптеры.
Блок- или байт-ориентированность является характеристикой как самого устройства, так и драйвера. Очевидно, что если устройство не поддерживает обмен адресуемыми блоками данных, а позволяет записывать или считывать последовательность байт, то и устройство, и его драйвер можно назвать байт-ориентированными. Для байт-ориентированного устройства невозможно разработать блок- ориентированный драйвер. Устройство прямого доступа с блочной адресацией является блок-ориентированным, и для управления им естественно использовать блок-ориентированный драйвер. Однако блок-ориентированным устройством можно управлять и с помощью байт-ориентированного драйвера. Так, диск можно рассматривать не только как набор блоков, но и как набор байт, первый из которых начинает первый блок диска, а последний завершает последний блок. Физический обмен с контроллером устройства по-прежнему осуществляется блоками, но байт-ориентированный драйвер устройства будет преобразовывать блоки в последовательность байт. Для устройств прямого доступа часто разрабатывают пару драйверов, чтобы к устройству можно было обращаться и по байт- ориентированному, и по блок-ориентированному интерфейсам в зависимости от потребностей.
Деление всех драйверов на блок-ориентированные и байт-ориентированные оказывается полезным для структурирования подсистемы управления вводом-выводом. Тем не менее, необходимо учитывать, что эта схема является упрощенной - имеются внешние устройства, драйверы которых не относятся ни к одному классу, например, таймер, который, с одной стороны, не содержит адресуемой информации, а с другой стороны, не порождает потока байт. Это устройство только выдает сигнал прерывания в некоторые моменты времени.
Операционная система UNIX в свое время сделала еще один важный шаг по унификации операций и структуризации программного обеспечения ввода-вывода. В ОС UNIX все устройства рассматриваются как некоторые виртуальные (специальные) файлы, что дает возможность использовать общий набор базовых операций ввода-вывода для любых устройств независимо от их специфики. Эти вопросы обсуждаются в следующем разделе, посвященном файлам и файловым системам.