Разбиение множества

Одной из наиболее часто встречающихся операций над множествами является операция разбиения множества на систему подмножеств.

Так, система курсов данного факультета является разбиением множества студентов факультета; система групп данного курса является разбиением множества студентов курса.

Пример. Продукция предприятия: — высший сорт, I, II, брак.

Рассмотрим некоторое множество M и систему множеств

М = {X1, X2, ..., Xn}

Система множеств M называется разбиением множества M, если она удовлетворяет следующим условиям:

  1. Любое множество X из M является подмножеством множества М

∀X∈M: X⊆M;

  1. Любые два множества X и Y из М являются непересекающимися

∀X∈М, ∀Y∈M: X≠Y → X∩Y=∅.

  1. Объединение всех множеств, входящих в разбиение, дает множество M

X1∪X2∪...∪ Xn=M.

Тождества алгебры множеств

С помощью операций объединения, пересечения и дополнения из множеств можно составлять различные алгебраические выражения.

Если алгебраические выражения V(X,Y,Z) и S(X,Y,Z) представляют собой одно и то же множество, то их можно приравнять друг другу, получая алгебраическое тождество вида V(X,Y,Z) = S(X,Y,Z)

  1. (X∪Y)∩Z = (X∩Z)∪(Y∩Z) (аналогичное дистрибутивному закону (a+b)c=(a+c)(b+c) в обычной алгебре).
  2. (X∩Y)∪Z = (X∪Z)∩(Y∪Z)
  3. Если Y⊆X, то X∩Y=Y, X∪Y=X. Действительно, все элементы множества Y являются в то же время и элементами множества X. Значит пересечение этих множеств, то есть общая множеств Х и Y совпадает с Y. В объединение множеств X и Y множество Y не внесет ни одного элемента, который уже не входил бы в него, будучи элементом множества Х. Следовательно, X∪Y совпадает с X.
  4. Пусть в примере 3 Y=X. Тогда, учитывая, что X⊆X, то X∩Х=Х, X∪Х=X. (идемпотентность).
  5. Докажем тождество (X∪Y)¯=X¯∩Y¯. Предположим, что х∈(X∪Y)¯, то есть х∉X∪Y. Это значит, что х∉X и х∉Y, то есть и x&isinX¯ и x&isinY¯;. Следовательно, x∈X¯∩Y¯. Предположим теперь, что y∈X¯∩Y¯, то есть y∈X¯ и y∈Y¯. Это значит, что y∉X и y∉Y, то есть что y∉X∪Y. Следовательно, y∈(X∪Y)¯.
  6. Тождество (X∩Y)¯=X¯∪Y¯. Обычно тождества 5) и 6) называются тождествами де-Моргана.
  7. (A\B)∩C=(A∩C)\B=(A∩C)\(B∩C)
  8. A\B=A\(A∩B)
  9. A=(A∩B)∪(A\B)

Дополнение к занятию «операции над множествами»

Множество элементов, принадлежащих или A, или B, называют симметричной разностью или дизьюнктивной суммой.

S = A⊕B = (A\B)∪(B\A) = (A∩B¯)∪(A¯∪B) = (A∪B)∩(A∩B)¯

Для симметрической разности выполняются следующие законы:

  1. 1) A⊕B = B ⊕A — коммутативность,
  2. 2) A⊕(B⊕С) = (A⊕B)⊕С — ассоциативность,
  3. 3) A⊕∅ = А=∅⊕A — существование нейтрального элемента,
  4. 4) A ⊕А = ∅
  5. 5) A∩(B⊕С) = (A∩B)⊕(А∩С) — дистрибутивность относительно пересечения.