Блоттинг

После того как ДНК, РНК или белки разделены, они должны быть перенесены на твердую подложку для детекции и других операций, которые в геле идут с трудом. Процесс переноса, приводящий к иммобилизации молекул, т.е. закреплению в неподвижном состоянии, называется блоттингом (по англ. – blotting). В качестве подложки используются нейлоновые или нитроцеллюлозные мембраны.

Блоттинг (от англ. blotting – промокание) – это метод перенесения электрофоретических фрагментов ДНК на специальную пленку (мембрану) из нитроцеллюлозы, связывающую (иммобилизующую) одноцепочечные молекулы ДНК.

 

Саузерн-блоттинг (по фамилии предложившего его автора) основан на перемещении фрагментов ДНК благодаря капиллярному эффекту. Процесс переноса фрагментов ДНК, находящихся в агарозном геле, на пленку из нитроцеллюлозы с помощью фильтровальной бумаги похож на промокание.

Анализ проводят следующим образом:

– Выделенную, очищенную, денатурированную и разбитую на фрагменты ДНК помещают на лист агарозного геля, где происходит электрофоретическое разделение фрагментов по массе и заряду.

– Лист агарозного геля помещают на фильтровальную бумагу, смоченную концентрированным солевым (буферным) раствором.

– Затем на гель накладывают нитроцеллюлозный фильтр, где происходит иммобилизация (или адсорбция, или фиксация) одноцепочечных фрагментов ДНК.

– Поверх фильтра накладывают стопку листов сухой фильтровальной бумаги, которая обеспечивает медленный ток буферного раствора через гель (т.е. служит своеобразным капиллярным насосом). Солевой раствор, проходя через агарозный гель, увлекает за собой фрагменты ДНК, которые задерживаются нитроцеллюлозой и связываются с ней, а раствор впитывается сухой фильтровальной бумагой.

– Далее ДНК денатурируют щелочью, а фильтр выдерживают в вакууме при температуре 800С, в результате чего одноцепочечные фрагменты ДНК необратимо иммобилизуются (фиксируются) на нитроцеллюлозе. При этом расположение полос иммобилизованной ДНК точно соответствует их расположению в геле.

– ДНК, связанную с фильтром, помещают в раствор с меченым ДНК зондом, в котором и происходит гибридизация. Гибридизироваться (образовывать водородные связи) со специфическим зондом будут только комплементарные ему фрагменты ДНК, которые можно обнаружить в виде светлых полос на рентгеновской пленке, т.е. радиоавтографии нитроцеллюлозного фильтра

 

Дот-блоттинг. Для приготовления дот-блоттов препарат ДНК или РНК наносят непосредственно на фильтр. Капельки препарата выглядят в виде точек на фильтре, что объясняет название типа блоттинга (англ. dot –точка). 1) Из геномной ДНК, предварительно обработанной ультразвуком, образуются фрагменты длиной 5–10 пар нуклеотидов.

2) Чтобы сделать ДНК- или РНК-пробы доступными зонду, их нужно денатурировать, т.е. перевести в одноцепочечную форму. Это происходит под воздействием температуры 100 °С.

3) Денатурированные нуклеиновые кислоты инкубируют на льду: быстрое понижение температуры предотвращает их ренатурацию, т.е. комплементарное спаривание цепей. Денатурированную ДНК или РНК наносят непосредственно на фильтр, который инкубируют в растворе, содержащем зонд.

4) Чтобы анализируемая нуклеиновая кислота не перешла в раствор, ее необходимо зафиксировать на фильтре (мембране). Для этого используют два типа фильтров: нитроцеллюлозный и нейлоновый.

Для иммобилизации нуклеиновых кислот на нитроцеллюлозном фильтре используют прожаривание при 80 °С в вакууме, а на нейлоновом фильтре – УФ-облучение в течение 3–5 минут.

5) После инкубации препарата нуклеиновых кислот с меченым изотопом зондом проводят радиоавтографию в специальной кассете или идентификацию нерадиоактивными методами.

Дот-блоттинг позволяет ответить только на один вопрос: есть ли в данном образце искомая последовательность нуклеотидов.

 

Нозерн-блотт анализ применяется:

1) для выделения и анализа РНК (например, для выяснения того, присутствует ли в данном типе клеток мРНК, считанные с данного гена, т.е. экспрессируется ген или нет;

2) для определения количества этой РНК и его изменения в развитии данного типа клеток;

3) для определения размера транскрипта какого-то гена.

В данном случае молекулы РНК, выделенные из клетки, разделяются по размерам с помощью гель-электрофореза, а затем переносятся на фильтр. После гибридизации с меченым одноцепочечным зондом выявляются места гибридизации (гомологии) РНК и зонда.

Если нуклеотидная последовательность искомого гена (или мРНК) не известна, но известен белок, синтез которого он контролирует, то можно выделить небольшое количество чистого белка, определить аминокислотную последовательность некоторой его части (достаточно знание 5–6 аминокислотных остатков). Пользуясь таблицей генетического кода, можно установить все возможные последовательности нуклеотидов в том участке мРНК (или самого гена), который кодирует данную аминокислотную последовательность. В этом случае можно синтезировать зонд для поиска нужных клонов в библиотеке генов.

 

Вестерн-блоттинг (иммуноэлектроблоттинг, белковый блоттинг) –это метод идентификации уникальных белков. В его основе лежит явление высокоспецифичного взаимодействия антиген–антитело. Таким образом, антигеном (мишенью) является определяемый белок, а зондом – антитело к нему.

Антитела к исследуемому белку получают различными способами. Наиболее простым является введение очищенной пробы белка в кровяное русло лабораторного животного (обычно кролика). В его организме вырабатываются антитела (иммуноглобулины) к данному чужеродному белку. Это первичные антитела, которые и будут взаимодействовать с белком-мишенью.

Однако было бы не рационально вводить метку для идентификации непосредственно в данные антитела. Для определения разных белков потребовалось бы метить разные антитела, что привело бы к их высокой стоимости. Более разумным оказалось использование универсальных антителконъюгированных антииммуноглобулинов, являющихся, по сути, антителами к антителам, выработанным при использовании идентифицируемого белка как антигена. К примеру, конъюгированные антииммуноглобулины к Ig кролика будут взаимодействовать со всеми иммуноглобулинами, синтезированными у кролика к разным антигенам. Таким образом, именно такие универсальные вторичные антитела несут изотопную или нерадиоактивную метку. Кроме неизотопной метки, которая в ходе ряда реакций приводит к образованию нерастворимого окрашенного соединения (как в случае блоттинга нуклеиновых кислот), очень часто используют хемилюминесцентную метку, обладающую более высокой чувствительностью.

1) Экстракция белков из гомогената

2) Разделение белков по молекулярным массам с помощью SDS-электрофореза в полиакриламидном геле (ПААГ). Метод SDS-электрофореза подразумевает денатурацию нативных белков. Таким образом, молекулы белка, обладающие одинаковой молекулярной массой, пройдут в геле одинаковый путь и выстроятся в виде полосы. Поскольку в смеси присутствуют белковые молекулы разного размера, образуется множество полос. Визуализировать результаты электрофореза можно окрашиванием белка (кумасси бриллиантовый синий, амидо черный, окрашивание серебром). Окрашивание серебром обладает уникальной чувствительностью, что позволяет определить всего 0,1 нг белка в полученной полосе. Это очень важно для контроля количества белка, нанесенного на гель.

3) Перенос белков из геля на мембрану. Это делается потому, что полиакриламид не позволяет диффундировать большим молекулам иммуноглобулинов к белку. А иммобилизованный на мембране белок становится доступным антителам. В отличие от блоттинга нуклеиновых кислот перенос белка на мембрану происходит под воздействием электрических сил, т.е. в электрическом поле.

4) Полученный блот инкубируют с антисывороткой к белку, а затем с антииммуноглобулинами. Результат визуализируют в соответствии с используемым типом метки.

 

Ограничения:

1) большой размер исследуемых фрагментов, значительно превосходящий длину ДНК-зондов и препятствующий прямому молекулярному анализу;

2) невозможность произвольного выбора концов изучаемых последовательностей, определяющихся наличием соответствующих сайтов рестрикции в исходной молекуле ДНК;

3) необходимость большого количества хорошо очищенной высокомолекулярной геномной ДНК (не менее 10 мкг на одну реакцию, что равноценно 0,5—1 мл крови),

4) для геномной гибридизации — наличие радиоактивных ДНК-зондов с высокой удельной активностью не менее 109 имп./мин*мкг), действующих ограниченный промежуток времени, и специально оборудованного изотопного блока. К тому же длительная экспозиция автографов значительно удлиняет время получения результатов.

5) большая трудоемкость исследований