ТЕМА 5. ПРОВЕРКА ВЫПОЛНЕНИЯ ОСНОВНЫХ ПРЕДПОСЫЛОК РЕГРЕССИОННОГО АНАЛИЗА
При моделировании реальных экономических явлений и процессов мы нередко сталкиваемся с ситуациями, в которых условия классической линейной модели регрессии (парной или множественной) оказываются нарушенными. Приступая к оценке параметров уравнения регрессии, мы предполагали, что реальная взаимосвязь переменных линейна, а отклонения от регрессионной прямой удовлетворяют определенным условиям. Так ли это на самом деле? Если нет, то наш анализ коэффициентов регрессии неточен и оценки этих коэффициентов могут не обладать такими желательными свойствами, как несмещенность, состоятельность и эффективность.
Для получения качественных оценок необходимо следить за выполнением предпосылок регрессионного анализа (условий Гаусса-Маркова), так как при их нарушении МНК может давать оценки с плохими статистическими свойствами. В частности, могут не выполняться предположения о том, что случайные возмущения модели имеют постоянную дисперсию и не коррелированны между собой.
Заметим, что предположение о нулевом среднем возмущений не является ограничением для модели и вводится для упрощения выкладок. Действительно, пусть в линейной эконометрической модели Y = aX + b + e случайное возмущение e таково, что его среднее Мe ¹ 0 . Тогда эту модель можно переписать следующим образом:
Y = aX + (b + Мe) + (e – Мe) = ,
где = b + Мe – неизвестный параметр модели (как и параметр b);
= e – M(e) – случайное возмущение модели с = M(e – Me) =
= Me – Me = 0.
Таким образом, получаем снова линейную модель с неизвестными параметрами, но с нулевым средним для случайного возмущения модели.
Серьезной проблемой при построении множественных эконометрических моделей по МНК является мультиколлинеарность – высокая взаимная коррелированность объясняющих переменных. Изучению указанных проблем посвящена данная тема.