СТАТИСТИЧЕСКИХ МОДЕЛЕЙ ПРОГНОЗИРОВАНИЯ
Следует отметить, что для различных временных рядов их математическая аппроксимация может иметь разное аналитическое выражение. Поэтому на практике необходимо иметь широкий набор математических зависимостей, включая зависимости (1.3.2 – 1.3.5 ) и т.д.
Для выбора той или иной модели из рассматриваемого класса необходим некоторый критерий. В задачах регрессионного анализа в качестве такого критерия традиционно используется нормированная к числу степеней свободы сумма квадратов отклонений истинных значений рассматриваемой величины от расчетных (критерий минимума остаточной дисперсии).
Однако, как показывает практика, такой подход в прогнозировании приводит к моделям, обладающим плохими прогнозирующими свойствами. В связи с этим в ряде работ производится разделение выборки на обучающую (используемую для оценки параметров моделей) и контрольную (используемую для оценки точности прогноза) части. При этом в качестве критерия выбора модели используется минимум средней квадратичной ошибки в контрольной выборке. Такой подход является более перспективным, однако к его недостаткам следует отнести потери части информации как при идентификации модели, так и при оценке ее параметров. Поэтому аналитическая оценка дисперсии ошибки прогноза, обусловленной ошибками оценки параметров моделей и случайной составляющей, и ее использование в качестве критерия выбора модели представляется предпочтительней.
Следует отметить, что априорная аналитическая оценка дисперсии ошибки прогноза является весьма условной, так как мы не застрахованы от других видов ошибок.
Вообще говоря, к возможным причинам ошибочности прогнозов можно отнести:
- методические ошибки (неудачный выбор метода прогнозирования для данного объекта, неправильный выбор (неадекватность) математической модели прогнозирования, ошибки оценок параметров модели, неправомерность распространения существовавших в прошлом тенденций и функциональных связей на будущее);
- недостаток информации (недостоверность и неполнота используемой для прогноза статистической информации, квантование времени при построении временных рядов);
- случайность ( воздействие случайных факторов, приводящее к случайной составляющей модели, редкие непредсказуемые события).
Наибольший вопрос при применении экстраполяционного метода прогнозирования всегда вызывает правомерность распространения прошлых тенденций на будущее. Со временем могут изменяться как параметры моделей, так и сами математические зависимости, происходить различные качественные изменения (скачки).
Процессы, для которых характерно плавное изменение математической зависимости, должны описываться с помощью адаптивных моделей.
И, наконец, учесть редкие непредсказуемые события практически невозможно. Поэтому можно согласиться с авторами работы, которые считают прогноз эффективным, если он снижает уровень неопределенности по сравнению с природным (по многолетнему среднему) или инерционным (завтра как сегодня) прогнозом.