Метод наименьших квадратов. Предпосылки применения метода для оценивания регрессионной модели. Система нормальных уравнений и ее решение.
Согласно МНК неизвестные параметры b0 и b1 выбираются таким образом, чтобы сумма квадратов отклонений эмпирических значений yi от значений , найденных по уравнению регрессии = + , была минимальной: = = ) = )
= [ =
S = = = S( min
Функция S зависит от двух переменных b0 и b1 на основании необходимого условия экстремума приравниваем к нулю ее частные производные первого порядка по каждой из переменных:
=
= 2 )=0
2
Откуда после преобразований получим систему нормальных уравнений для определения параметров линейной регрессии:
=
Теперь, разделив обе части уравнения на n, получим систему нормальных уравнений в виде:
=
Решением этой системы являются искомые значения коэффициентов выборочной функции регрессии, которые можно рассчитать по формулам:
=
= - *
Коэффициент b1 называется выборочным коэффициентом регрессии (или просто коэффициентом регрессии) Y по X. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется переменная Y при увеличении переменной Х на одну единицу.
Таким образом, мы получим выражение выборочной функции парной линейной регрессии, которое является оценкой функции парной линейной регрессии для ГС.
Предпосылки:
1. случайный характер остатков;
2. нулевая средняя величина остатков, не зависящая от xi;
3. гомоскедастичность – дисперсия каждого отклонения ei, одинакова для всех значений x ;
4. отсутствие автокорреляции остатков – значения остатков ei распределены независимо друг от друга;
5. остатки подчиняются нормальному распределению.
Если распределение случайных остатков ei не соответствует некоторым предпосылкам МНК, то следует корректировать модель.
Свойства коэффициентов функции регрессии, полученных с помощью МНК:
Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.
Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному.
Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.
Указанные критерии оценок (несмещенность, состоятельность и эффективность) обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать поведение остаточных величин регрессии ei.