Вопрос 1. Пластический обмен. Биосинтез белка. Матричный характер биосинтеза

Пластический обмен (ассимиляция, или конструктивный обмен) – совокупность всех процессов синтеза сложных органических веществ. Эти вещества идут на построение органелл клетки, на создание новых клеток при делении. Пластический обмен всегда сопровождается поглощением энергии.

Рассмотрим этот процесс на примере образования важнейших органических соединений клетки – белков. Структура белка определяется участком молекулы ДНК, называемым геном. Каждые три последовательности нуклеотидов кодируют одну аминокислоту. Молекулы ДНК не являются непосредственно матрицами в самом процессе синтеза белка. Сначала происходит перенос генетической информации о нуклеотидном строении ДНК на иРНК (процесс транскрипции). Строится молекула иРНК на одной из цепочек молекулы ДНК-матрицы во время ее раздвоения при участии специального фермента РНК-полимеразы. Спаривание нуклеотидов идет по принципу комплементарности: последовательность нуклеотидов в молекуле определяется их последовательностью в цепочке ДНК. Как только заканчивается построение на ДНК-матрице цепи иРНК, она сразу же переходит в цитоплазму и прикрепляется там к одной из рибосом. Вслед за этим начинается синтез белка. Процесс синтеза полипептидной цепи на матрице иРНК называется трансляцией. Происходит этот процесс в рибосомах с участием фермента пептидполимеразы. Рибосомы построены из белка и РНК. Эта РНК называется рибосомной (рРНК). Прикрепившись на конце нити иРНК, рибосома начинает синтез полипептидной цепи. Передвигаясь в одном определенном направлении, она считывает по три нуклеотида и добавляет к растущей полипертидной цепи по одной аминокислоте.

Перенос аминокислот к рибосомам выполняет транспортная РНК (тРНК). Молекула тРНК по сравнению с молекулой и-РНК небольшая, она содержит всего 70–80 нуклеотидов. Ее полинуклеотидная цепочка примерно поцентру перегибается, и две половины спирально закручиваются между собой. На одном конце молекулы тРНК должны быть основания, комплементарные соответствующему участку (кодону) в цепи иРНК, и на другом конце – способные «узнавать» определенную аминокислоту. Конец, к которому присоединяется аминокислота, у всех тРНК имеет одинаковые нуклеотиды – ЦЦА. Для каждой аминокислоты существует своя особая тРНК. Достигнув другого конца цепочки иРНК, рибосома отделяется, и в раствор выходит новая синтезированная молекула белка. Молекулярная скорость трансляции и транскрипции огромна – около 1000 триплетов иРНК в одну минуту на одну рибосому, а всего в минуту, например, клетка Е. coli собирает около 15*106 аминокислот в белки.

Затем линейная молекула полипентидной цепи приобретает объектную структуру. Под влиянием возникающих водородных связей полипептидная цепочка скручивается в спираль, и белковая молекула принимает биологически активную конфигурацию.

Ведущая роль в биосинтезе белка принадлежит ДНК. В зависимости от расположения кодирующих триплетов вдоль ее цепи на ней синтезируется молекула информационной РНК, которая реализует эту информацию, располагая в соответствии со строением аминокислоты в синтезирующейся молекуле белка.

Таким образом, наследственная информация (все признаки и свойства организма) сохраняется в молекулярной структуре ДНК, и реализуется в процессе биосинтеза белка.