Асимптоты кривой, заданной неявно
Неявно заданная алгебраическая кривая описывается уравнением
F(x, y) = 0,
где левая часть представляет собой многочлен относительно переменных x и y.
В дифференциальной геометрии используется следующий метод нахождения наклонной асимптотыалгебраической кривой. Пусть асимптота описывается уравнением y = kx + b. Подставляя это выражение для y в уравнение кривой, получаем алгебраическое уравнение относительно одной переменной x:
где коэффициенты Ai зависят от параметров асимптоты k и b (причем коэффициент A0 зависит лишь от k). Значения k и b определяются из условия:
Для нахождения вертикальной асимптоты нужно подставить ее уравнение x = a в уравнение кривой и преобразовать последнее к виду:
Необходимым условием существования вертикальной асимптоты является отсутствие в последнем уравнении старшего члена B0 yn. Значение параметра a определяется из условия
Приведенные формулы для асимптот неявно заданных кривых справедливы, если кривая не имеет особых точек на бесконечности.