Понятие об автомодельности.
Автомодельность - кардинальное понятие теории подобия, принципиальное содержание которого сводится к так называемому вырождению чисел подобия. Формальным признаком её служит выпадение чисел подобия как аргументов, входящих в функциональную зависимость.
Обстоятельное рассмотрение этого вопроса можно найти в книге А.А.Гухмана «Применение теории подобия к исследованию процессов тепломассообмена. Процессы переноса в движущейся среде». - М.: Высшая шкала,1967. - 302 с.
Мы же ограничимся лишь кратким рассмотрением содержания этого понятия без уяснения которого невозможна грамотная постановка эксперимента.
Для простоты будем считать, что в интересующем исследователя процессе определяющими является силы вязкого трения т.е. зависимость (13.8) имеет вид . График этой зависимости устанавливается экспериментально, и часто имеет вид, показанный на рис. 13.1.
|
Как следует из рисунка, при увеличении числа Рейнольдса в опытах зависимость ослабевает и при некотором конкретном для каждого случая значении числа Re, называемого граничным ( ) происходит «вырождение», т.е. число Эйлера перестает зависеть от Re.
Рис. 13.1 |
Исчезновение (вырождение) числа Рейнольдса означает отсутствие предпосылок для подобия . Очевидно, механизм процесса таков, что не надо никаких условий для подобия и все процессы такого типа автоматически подобны между собой. Этот случай и называется автомодельностью. На рис.13.1 автомодельная область обозначена римской цифрой II.
В общем случае под автомодельной понимают область, в которой неопределяющее число подобия перестает зависеть от определяющего (либо определяющих).
Проведение опытов в этой области существенно упрощается. Действительно, если в области I экспериментатор должен заботиться о том, чтобы , что далеко не всегда возможно, то в автомодельной области достаточно, чтобы было больше . Нужно лишь помнить, что какого-то универсального значения не существует, оно всегда зависит от природы изучаемого объекта, в частности, от его формы. Поэтому, как правило, задачей первого этапа экспериментального исследования является нахождение граничного значения определяющего числа подобия.
Таким образом, приведенные сведения показывают, что если в результате анализа изучаемого явления удается составить его математическую модель, то принципиально задача постановки эксперимента может считаться разрешенной. К сожалению, возможность аналитического описания является скорее исключением, чем правилом. Поэтому целью следующего раздела является ознакомление со стратегией исследователя при возникновении такой ситуации.