Комптон эффектісі

Лупа. Микроскоп. Телескоп. Лупа — көзге нашар көрінетін ұсақ нысандарды (объектілерді) бақылауға арналған оптикалық аспап. Бақыланатын нәрсе ОО1 Лупаның f фокустық қашықтығынан (FF¢ —фокаль жазықтығы) аз ғана кішірек қашықтыққа орналастырылады. Осының нәтижесінде Лупа нәрсенің тура, үлкейген және жорамал О¢О¢1 кескінін береді. О¢О¢1 кескіннен шыққан сәуленің көзге түсу бұрышы (a) нәрсенің өзінен шыққан сәуленің түсу бұрышынан (j бұрышы) үлкен болады: Лупаның үлкейту әсері осымен түсіндіріледі. Лупаның үлкейтуі (Г) деп a бұрышының нәрсе Лупасыз ең жақсы көрінетін D=250 мм қашықтықтан көріну бұрышына (j) қатынасын айтады. Лупаның үлкейтуі оның фокустыққашықтығымен Г=250/f қатынасы арқылы байланысқан; Лупаның құралымына байланысты Г-ның мәні 2-ден 40 — 50-ге дейінгі аралықта жатады. Қарапайым Лупалар жинағыш жазық-дөңес линза болып табылады;

әдетте олардың үлкейтуі аз ~(2 — 3) болады. Орташа үлкейту (4 — 10) кезінде екі және үш линзалы жүйелер қолданылады (2-сурет). Аз және орташа үлкейтетін Лупаларда кескіннің көріну бұрышы (a) 15 — 20Ә-тан аспайды. Үлкейтуі үлкен Лупаның көріну бұрышы 80 — 100Ә-қа дейін жетеді. Мұндай Лупаның кемшілігі: нәрседен Лупаға дейінгі қашықтықтың тым аз болуынан жарықталынудың қиындайтындығы және бірқатар қолайсыздықтың туындайтындығы. Мұндай кемшілік алыстағы нысанды (Г=2,5), сондай-ақ, жақындағы нысанды (Г=6) бақылауға қолданылатын телелупаларда жойылған. Сонымен қатар, призматикалық линзалармен бинокльдер үйлестіріліп жасалған, аздап қана үлкейтетін бинокулярлық(стереоскоптық) Лупалар да қолданылады

Микроскоп (грек. mіkros – ұсақ және skopeo – көремін) – жай көзге көрінбейтін нысандардың (немесе олардың құрылымдық бөліктерінің) бірнеше есе үлкейтілген кескінін алатын оптикалық прибор. Микроскоп бактериялар, органикалық клеткалар, майда кристалдар, қорытпалардың құрылымы, т.б. өлшемдері көздің көру мүмкіндігінен аз (ажыратқыш шамасы 0,1 мм-ге тең) нысандарды зерттеуге арналған.Микронысандардың пішінін, өлшемін, құрылымын, т.б. сипаттамаларын анықтауға, элементтерінің ара қашықтығы 0,2 мкм-ге дейінгі құрылымдарды ажыратып көруге мүмкіндік береді. Линзаның немесе екі линзадан тұратын жүйенің заттардың үлкейтілген кескінін беретін қасиеттері 16 ғасырдың өзінде белгілі болған. Микроскопты алғаш рет ғылыми - зерттеу жұмыстарына қолдану ісі жануарлар тіні мен өсімдікұлпаларының клеткалық құрылысын анықтаған (1665) ағылшын ғалымы Р.Гук және Микроскоптың жәрдемімен микроорганизмдерді ашқан (1673 – 77) голланд ғалымы А.Левенгук есімдерімен байланысты. 1872 – 73 жылы неміс ғалымы Э.Аббе жасаған Микроскопта өздігінен сәулешығармайтын нысандар кескінінің түзілу теориясы әр түрлі микроскопты зерттеу әдістерінің дамуына зор ықпал етті.

Микроскоптың түрлері (типтері)Зат тұратын үстелде орналасқан нысан жасанды жарықпен (шам және линза-коллектор), айнаның және конденсордың көмегімен жарықтандырылады. Нысанды үлкейту объектив пен окуляр арқылы жүзеге асырылады. Объектив нысанның төңкерілген шын және үлкейтілген кескінін береді. Окуляр, әдетте, ең жақсы көрінетін қашықтықта (D=250 мм) нысанның екінші ретті үлкейтілгенжорамал (жалған) кескінін түзеді. Егер окулярды кескінді оның алдыңғы окуляры фокусының алдына келетіндей етіп ығыстырса, онда окулярдың түзетін кескіні шын және оны экранда немесе фотопленкада алуға болады. Микроскоптың жалпы үлкейтуіобъектив пен окуляр үлкейтулерінің көбейтіндісіне тең: Г=bЧГок, мұндағы Гок окуляр үлкейтуінің номинал мәні. Объективтіңүлкейтуі: b=D/fўоб формуласымен өрнектеледі, мұндағы D – объективтің артқы фокусы және окулярдың алдыңғы фокусының ара қашықтығы; fўоб – объективтің фокусаралық ара қашықтығы. Окулярдың үлкейтуі лупаның үлкейтуі сияқты мына формуламен өрнектеледі: Гок=250/fўок, мұндағы fўок – окулярдың фокус аралық қашықтығы. Әдетте, Микроскоптың объективі 6,3-тен 100-ге, алокуляры 7-ден 15-ке дейін үлкейте алады. Сондықтан Микроскоптың жалпы үлкейтуі 44-тен 1500-ге дейінгі аралықта жатады. Иристік далалық және апертуралық диафрагмалар жарық шоғын шектеу және оның шашырауын кеміту қызметін атқарады. Микроскоптың негізгі сипаттамасы оның ажыратқыштық шамасы (қабілеттілігі). Микроскоптың ажыратқыштық шамасы шектеулі болады, ол жарық дифракциясымен түсіндіріледі.Микроскопты алғаш рет ғылыми-зерттеу жұмыстарына қолданғандар жануарлар тіні мен өсімдік ұлпаларының клеткалық құрылысын анықтаған (1665) ағылшын ғалымы Роберт Гук және микроскоптың жәрдемімен микроорганизмдерді ашқан (1673 – 77) голланд ғалымы Антони Ван Левенгук болды.

Қолдану облыстарына не болмаса бақылау әдістеріне байланысты

анықталады. Биологиялық Микроскоп микробиологияда, гистологияда, цитологияда, ботаникада,медицинада зерттеулер жүргізуге, ал физикада, химияда, т.б. мөлдір денелерге бақылау жүргізуге арналған. Биологиялық зерттеулерде осымен қатар люминесценттікжәне инвертирленген Микроскоптар қолданылады. Металлографикалық Микроскоп – металдар мен қорытпалардың микроқұрылымын зерттеуге; поляризациялықМикроскоп – қосымша поляризациялық қондырғылармен жабдықталған және негізінен минералдар мен кендердің шлифтерін зерттеуге; стереомикроскоптар – бақыланатын заттардың көлемді кескіндерін алу үшін; өлшеуіш Микроскоптар – машина жасау саласында дәл өлшеулер жүргізуге арналған. Аталғандардан басқа арнайы Микроскоп да бар: фотоэмульсиядағы ядролық бөлшектердің іздерін анықтайтын Микроскоп; 20000С-қа дейінгі қыздырылған нысандарды зерттейтін Микроскоп;операцияларда қолданылатын хирург. Микроскоп, интерференциялық Микроскоп.

Телескоп– аспан шырақтарын электр-магниттік сәуле арқылы бақылауға арналған астрономиялық құрал. Телескоп гаммалық телескоп, рентген, ультракүлгін, оптикалық, инфрақызыл және радиотелескоп; оптикалық сұлбасы бойынша айналы (рефлектор), линзалы (рефрактор) және айналы-линзалы телескоп болып бөлінеді. Телескоптардың көмегімен фотографиялық, теледидарлық, электронды-оптикалық, т.б. сәуле қабылдағыштарды пайдалану арқылы фотографиялық, спектрлік, т.б. бақылаулар жүргізіледі. Телескоптар пайдалану ретіне қарай: астрофизикалық (жұлдыздарды, планеталарды, тұмандықтарды зерттейтін) телескоп, Күн телескопы, астрометрикалық телескоп, серіктік фотокамералар (Жердің жасанды серіктерін бақылайтын), сондай-ақ метеорларды бақылайтын метеор патрульдері мен кометаларды бақылайтын телескоп, т.б. болып бөлінеді. Телескоптың (оптикалық рефрактордың) көмегімен алғашқы астрономиялық бақылауды Г.Галилей жүргізді


Масса ақауы Масса ақауы, масса дефектісі – атом ядросын құраушы нуклондар (нейтрондар мен протондар) массаларының қосындысы мен ядро массасының (М) арасындағы айырым , мұндағы Z – ядродағы протондардың саны, А – ядроның массалық саны, Мр мен Мn – протон мен нейтронның массалары. Масса ақауы массаның атомдық бірлігімен өрнектеледі және ол ядродағы нуклондардың байланыс энергиясына тең (кері таңбамен алынған). Масса ақауы неғұрлым үлкен болса, солғұрлым байланыс энергиясы жоғары және ядро орнықты болады.

Масса тұрақтылық заңы, масса сақталу заңы – реакцияға қатысқан заттардың (реагенттердің) массаларының қосындысы реакция нәтижесінде түзілген заттардың (өнімдердің) массаларының қосындысына тең. 1774 – 89 ж. француз химигі Антуан Лавуазье, өзі жасаған күрделі тәжірибелерге сүйене отырып, тұжырымдаған. Мысалы, 32 г оттек пен 4 г сутек қосылғанда 36 г су түзіледі; 2Н2+О2 =2Н2О. Мұндағы реакцияға түскен реагенттердің жалпы массасы (36 г) реакция нәтижесінде түзілген өнімнің массасына (36 г) тең.

Малюс Заңы — анализатордан өткен сызықты поляризацияланған жарық қарқындылығының cos α-ге пропорционал азаятындығын өрнектейтін заң; мұндағы α — жарық поляризациясыжазықтығы мен прибор (анализатор) арасындағы бұрыш. Бұл заңды 1810 жылы француз физигі Э.Л. Малюс (1775 — 1812) ашқан. Егер І0 және І — анализаторға түсетін және одан шығатын жарық қарқындылықтарын сипаттаса, онда Малюс Заңы бойынша: І=І0cos2α түрінде орындалады. Өзгеше (сызықты емес) поляризацияланған жарықты екі сызықты поляризацияланған құраушылардың қосындысы түрінде қарастыруға болады. Олардың әрқайсысы үшін Малюс Заңы орындалады. Барлық поляризациялық приборлардан өтетін жарық қарқындылығы Малюс Заңы бойынша есептеледі, ал Малюс Заңы ескермейтін, α-ға тәуелді болатын шағылу кезіндегі шығындар басқа тәсілмен қосымша анықталады. Жарық қарқындылығын өлшеуге арналған оптик. құрал — поляризациялық фотометрдің құрылысы Малюс Заңына негізделген.

Мәжбүр тербелістер - айнымалы сыртқы іс-әрекеттің әсерінен қандай да бір жүйеде пайда болатын тербеліс.

Ньютон сақиналары. Ньютон сақиналары жұқа қабыршақтардағы интерференцияның дербес түрі, ол жұқа қабыршақ қалыңдығының біркелкі өзгеретін жағдайында байқалады. 1675 жылы Ньютон астрономиялық рефрактордың дөңес объективі мен жазық шыны арасындағы жұқа ауа қабатының түсін бақылаған. Ньютон тәжірибесінде тығыз сығылған шыны мен объективтің арасындағы ауаның жұқа қабатының қалыңдығы шыны мен объективтің түйіскен жерінен объективтің сыртқы шетіне қарай біркелкі ұлғая бастайды. Қарапайым есептеу аркылы өткен жарықтың радиусын, мәселен, ақшыл сақинаның радиусын анықтауға болады: мұндағы r — сақинаның радиусы, R — линза қисығының радиусы, d — жазық шынының бетінен линзаның жарық сынатын бетіне дейінгі арақашықтық.

Планк гипотезасы. Абсолют қара дененің сәулеленуінің спектрлік заңдылықтарын алғаш рет теориялық түрде дұрыс негіздеген Макс Планк. Ол үшін оған кванттық гипотезаны енгізуге тура келді. Бұл классикалық физикаға мүлде жат тұжырымдама еді. Классикалық физикада кез келген жүйенің энергиясы үздіксіз өзгереді. Ал Планктің кванттық гипотезасы бойынша энергия "үлестермен", дискретті түрде ғана шығарылады. Энергия "үлесін" квант деп атайды. Әр кванттың энергиясы жиілікке пропорционал:

мұндағы һ = 6,626 1034Дж*с — Планк тұрақтысы деп аталатын фундаментал (жарық жылдамдығы, элементар заряд секілді) тұрақты шама.Қатты қызған денелердің сәулеленуі түрлі жарықтандыру құралдарын жасауда қолданылады. Мысалы, кәдімгі электр шамының вольфрам қылы өте жоғары температураға (-3000К) дейін қыздырылуы нәтижесінде жарық шығарады. Түрлі техникалық қажеттіліктер үшін доғалық шамдар пайдаланылады

Планк теңдеуі. Кез келген температурада денеге түскен кез келген жиіліктегі барлық сәулелерді толықтай жұтатын денені абсолют қара дене деп атайды. Яғни, абсолют қара

дене үшін . Абсолют қара дененің идеалды моделі ретінде кішкентай саңылауы бар, ішкі беті қарайтылған тұйық қуысты алуға болады.

Жарық сәулесі шағылу нәтижесінде толық жұтылады. Кирхгоф сандық байланысты орнатқан


Бұл сәулеленудің спектралды тығыздығының спектралды жұту қабілетіне қатынасы дененің табиғатына тәуелді емес және барлық денелер үшін әмбебап функция болып табылады, яғни

Қазіргі заманға сәйкес теория үшін келесі өрнекті береді


- Планк теңдеуі (69.4)


мұндағы = - Планк тұрақтысы;

К= - Больцман тұрақтысы

Осы формуладан абсолют қара дененің сәулелену заңдары қортылып шығарылған.


Радиоактивті ыдырау заңы — атом ядроларының әр түрлі бөлшектер мен сәулелер шығара отырып, өздігінен түрлену заңы.[1][2] Радиоактивті ыдырау заңын Резерфорд ашқан:

немесе Эксперименттік зерттеулер радиоактивті ыдырау толығымен статистикалық заңдылыққа бағынатынын дәлелдеді. Белгілі бір радиоактивті изотоптың ядролары бірдей болады. Атом ядросының және ядролардың қайсысының ыдырайтыны - кездейсоқ оқиға. Мысал үшін, бір нуклидтің бірдей екі ядросын алайық. Ядроның біреуі 3 млрд жыл бұрын жұлдыздың қопарылысы кезінде, ал екінші ядро ядролық реакторда 3 мин бұрын пайда болсын. Ядролардың пайда болу уақытына қарамастан, келесі бір уақыт мезетінде екеуінің де ыдырауының ықтималдығы бірдей. Статистикалық құбылыстарды сипаттау үшін оқиғаның ықтималдығы ұғымын қолданады.

Резонанс (лат. resono, фр. resonance — үн қосу, дыбыс қайтару) — периодты түрде сырттан әсер етуші күштің жиілігі тербелмелі жүйенің меншікті жиілігіне жақындағанда сол тербелмелі жүйедегі еріксіз тербелістер амплитудасының күрт арту құбылысы; мәжбүр етуші күштің жиілігі жүйе тербелісінің меншікті жиілігіне жуықтаған кезде жүйедегі мәжбүр тербеліс амплитудасының кенеттен артып кету кұбылысы. Резонансты алғаш рет механика және акустикалық құбылыс ретінде италиян ғалым Г.Галилей, ал электр-магниттік жүйелерде, мысалы, тербелмелі контур арқылы ағылшын ғалымы Дж.Максвелл (1831 — 1879) қарастырған (1868).

Резерфорд тәжірибесі. Атомның ішінде электр зарядтарының орналасу тәртібін анықтау үшін 1911 жылы Резерфорд өзінің шекірттері Г. Гейгер және Э . Марсденмен бірге альфа-бөлшектер шоғын өте жұқа алтын фольгадан өткізіп, бірнеше тәжірибелер жасады. Осы тәжірибелерді зерделеу нәтижесінде атомның ядролық, басқаша айтсақ, планетарлық моделі өмірге келді.

Тәжірибенің нәтижесінде альфа-бөлшектердің басым көпшілігі фольгадан өткенде алғашқы бағыттан aуытқымайтыны (φ≈1-2°) анықталды. Бұл нәтиже, негізінен, Томсон моделіне сүйеніп жасалған есептеулермен дәл

келді. Бірақ, альфа- бөлшектердің мардымсыз аз бөлігі 90°-тан артық бұрышқа ауытқитыны, яғни олар фольгаға соғылып, кері бағытта ұшатыны таңдандырды. Сегіз мыңға жуық бөлшектердің біреуі ғана осындай үлкен бұрышқа ауытқиды екен! Мұны Томсон моделі негізінде түсіндіру тіпті мүмкін болмады.

Тәжірибеде алынған нәтижелерді зерделей отырып Резерфорд өз моделін ұсынды. Ол атомның оң заряды оның ортасында орналасқан радиусы шамамен 10-15 м өте аз көлемге жинақталған деген қорытындыға келді. Бұл орталық бөлшекті Резерфорд ядро деп атады. Атомның массасы түгел дерлік ядрода шоғырланған. Ядроны айнала әр түрлі орбиталармен электрондар қозғалып жүреді. Ең шеткі электрон орбитасының радиусы атомның радиусына тең, Ra≈10-10 м. Бұл үлгі Күн жүйесінің құрылымына ұқсайтын болғандықтан, оны атомның планетарлық моделі деп те атайды. Модель бойынша атом көлемінің басым көпшілік бөлігі "бос" болып шығады, ядроның радиусы атомның радиусынан 100 000 есе кіші. Орбиталардағы электрондардың теріс зарядтарының қосындысы ядроның оң зарядына тең, атом электрлік бейтарап.

Рентгендік спектроскопия— рентген сәулелерін шығару және жұтылу спектрлерін алу және оларды атомдардың, молекулалардың, сондай-ақ қатты денелердің электрондық энергет. құрылымын зерттеуге қолдану. Рентгендік спектроскопияға рентген электрондық спектроскопия да жатады. Рентгендік шығару спектрлері нысана ретінде алынып, зерттелетін затты рентген түтігінде үдей қозғалған электрондармен (бірінші реттік спектрлер) соққылау арқылы алынады. Шығару спектрлері рентгендік спектрометрде тіркеледі. Олар сәуле шығару қарқындылығының рентген фотондарының энергиясына тәуелділігі бойынша зерттеледі. Зерттелетін заттың жұқа қабаты арқылы ені жіңішке тежеулік сәуле спектрінің өтуі кезінде рентгендік жұтылу спектрлері түзіледі. Рентгендік шығару спектрлерін зерттеу арқылы валенттік электрондар күйлері тығыздығының, ал рентгендік жұтылу спектрлерін зерттеу арқылы еркін электрондық күйлері тығыздығының энергет. таралуы жайлы деректер алынады. Рентген-электрон. спектроскопия хим. талдауда және атомдардың ішкі деңгейлерінің энергиясын, сондай-ақ хим. қосылыстардағы атомдардың валенттілік күйлерін анықтау үшін де қолданылады.

Рентген сәулесі рентгендік терапия мақсаттары үшін кеңінен қолданылады. Техниканың көптеген салаларында рентгендік дефектоскопия әр түрлі ақауларды, жарықтарды, қуыстарды, пісіру жіктерін, т.б. анықтауға мүмкіндік береді. Рентген құрылымдық талдау кристалл торындағы минерал атомдарының анорган. және органик. қосылыстарының кеңістіктік орналасуын анықтайды. Рентген сәулесін қатты денелердің қасиеттерін зерттеуге қолданумен материалдар рентгенографиясы айналысады. Рентгендік спектроскопия заттардағы электрондардың күйлер тығыздығының энергия шамасы бойынша таралуын, хим. байланыстың табиғатын зерттейді, қатты денелер мен молекулалардағы иондардың эффекттік зарядын табады. Ғарыштан келетін Рентген сәулесінің көмегімен ғарыштық денелердің хим. құрамы мен ғарышта өтіп жатқан физ. процестер туралы деректер алынады . Рентген сәулесі, сондай-ақ тамақ өнеркәсібінде, криминалистикада, археологияда т.б. жерлерде қолданылады.

Серіппелі маятниктің дифференциалдық теңдеуі

Спектрлік сериялар – жиіліктері белгілі бір заңдылықтарға бағынатын атом спектріндегі спектрлік сызықтар тобы. Спектрлік сериялар сызықтарының ара қашықтығы мен олардың қарқындылығы қысқа толқындар бағытында азая орналасады. Олар, әсіресе, химикалық элементтердің периодтық жүйесіндегі бірінші топтағы элементтердің спектрлік сызықтарында айқын байқалады. Сутек атомының спектрлік серияларының толқын ұзындықтары (l) Бальмер формуласы деп аталатын 1/l=R(1/n21–1/n22) тәуелділікпен сипатталады, мұндағы R=109737,3143 см–1 – Ридберг тұрақтысы, n1 және n2 – кванттық ауысу сандары. n1=1,2,3… мәндері серияны, ал n2=n1+1, n1+2,… мәндері белгілі серияның жеке сызықтарын анықтайды. Әрбір серия үшін n1– тұрақты шама. Сутек атомдарының спектрлік сериялары n1 мәндеріне сәйкес төмендегіше аталады: ультракүлгін аймақтағы n1=1 серия Лаймансериясы, көзге көрінетін сәулелер диапазонында жатқан n1=2 Бальмер сериясы, инфрақызыл аймақтағы Пашен сериясы (n1=3), Брэкет сериясы (n1=4), т.б. Сілтілік металл спектрлерінде сызықтардың орналасуы күрделі заңдылықтармен өрнектеледі. Олар негізгі, айқын, диффузиялық және Бергман серияларына бөлінеді.

Паули принцип, тыйым салу принципі — табиғаттың іргелі заңдарының бірі. Көп электронды атомдарда электронның жағдайы Паули ашқан квантты-механикалық заңмен өрнектеледі. Бұл заі бойынша, 4 квант сандарымен суреттелетін бір кванттық жағдайда тек бір ғана электрон болады. S-орбитальда спиндері антипараллель тек 2 электрон ғана орналасады. Салдары: 1 деңгейдегі электрондардың максимал саны негізгі кванттық санының екі еселенген квадратына тең. 2 деңгейшедегі элетрондардың саны 2(2n+1) ге тең.

Клечковский ережесі. Орыс ғалымы Клечковский өте қарапайым және нақты ереже ұсынды: Элементтердегі атомдар электрондарының толтырылуы, квант сандары n+1 қосындысының өсуі тәртібі бойынша жүреді, егер екі деңгейдің қосындысы тең болса, онда бірінші n шамасы кіші деңгей толтырылады.

Гунд ережесі. Бір деңгейшелер аралығында сәйкес орбитальды электрондармен толтырған кезде, электрондар спиндерінің қосындысы максимал болуы керек. Барлық орбитальдарда бір электроннан орналасқаннан кейін, келесі электрондар жұптасып орналасады.

Сыртқы фотоэффект. Фотоэлектрлік құбылыстар, фотоэффект — электрмагниттік сәуленің затпен әсерлесуі нәтижесінде пайда болатын электрлік құбылыстар (электр өткізгіштігінің өзгеруі, ЭҚК-нің пайда болуы не электрондар эмиссиясы). Бұл құбылыс қатты денелерде, сұйықтықтарда, сондай-ақ газдарда да байқалады. Фотоэлектрлік құбылыстар қатарына рентген сәулелерінің фотоэффектісі мен ядролардың фотоэффекті де жатады. Қатты немесе сұйық денелердің жарық сәулесін (фотондарды) жұтуы нәтижесінде электрондардың бөлініп шығу құбылысы сыртқы фотоэффект делінеді. Мұны 1887 ж. Г.Герц ашқан. Сыртқы фотоэффектіні тәжірибе жүзінде А.Г. Столетов (1888) толық зерттеп, оның бірнеше заңдарын тұжырымдап берген. А.Г. Столетов ашқан фотоэффектінің бірінші заңы былайша тұжырымдалады:

максимал фотоэлектрлік ток (қанығу фототогы) түскен жарық ағынына тура пропорционал болады.

1905 жылы А.Эйнштейн сыртқы фотоэффект құбылысын жарықтың кванттық теориясы тұрғысынан түсіндіріп берді. Сыртқа қарай бөлініп шыққан электронның максимал кинетик. энергиясының (Емак) шамасы электронға берілген фотонның энергиясы (hv) мен шығу жұмысының (φ) айырымына тең (Емак=hv–φ) екендігі тәжірибе жүзінде дәлелденді. Сыртқы фотоэффектінің бұл екінші заңы, яғни Эйнштейн заңы былайша тұжырымдалады:

фотоэлектрондардың максимал энергиясы түскен жарық жиілігіне сызықты тәуелді болып өседі және оның қарқындылығына байланысты болмайды.

Радиоактивтілік-бірқатар химиялық элементтердің (уран, фторий, радий және т.б.) өзінен-өзі ыдырау және көзге көрінбейтін сәулелер (альфа-және бета-бөлшектер, гамма-сәулелер) шығару қабілеті. Бұл радиоактивті элементтер жартылай ыдырау кезеңімен, яғни барлық атомдардың жартысы ыдырайтын уақытпен өлшенетін қатаң белгілі бір жылдамдықпен ыдырайды. Түрлі радиоактивті заттар үшін жартылай ыдырау кезеңі секундтың бірнеше бөлігінен миллиардтаған жылдарға дейінгі кең шектің аралығында болады. Әсіресе, ядролық реакциялар кезінде радиоактивті изотоптар көп мөлшерде пайда болады.

Тербелістер кинематикасы мен динамикасы. Серіппелі маятник - серіппенің серпімділік күшінің әсерінен түзу сызықты тербеліс жасайтын дене[1]; бекiткен серіппе, серпiмдiлiк коэффициентi k (қаттылықпен), мен массасы m жүгi болатын механикалық жүйе.

Фотоэффект құбылысы.1887 неміс физигі Генрих Герц электр ұшқындары пайда болатын вибратор саңылауына ультра күлгін сәулелерін түсіргенде электр ұшқындары көбейіп, электр разрядының, күшейетіндігін байқаған. Одан кейін ғалымдар мырыш пластинкасына ультра күлгін сәуле түсіргенде одан теріс зарядтар ұшып шығып, мырыштың оң зарядталатындығын анықтаған.
Осы тәжірибелер металл пластинкаға жарық түскенде, одан электрондар ұшып шығатындығын көрсетеді. Осындай жарықтың әсерінен металл пластинкадан электрондардың ұшып шығу құбылысын фотоэффект құбылысы деп атаған.
Бұл фотоэффект құбылысын тереңірек зерттеген орыс физигі Столетов болды. Столетов бұл құбылысты мынандай тәжірибе арқылы зерттеген.

Фотоэлектрлік құбылыстар, фотоэффект — электрмагниттік сәуленің затпен әсерлесуі нәтижесінде пайда болатын электрлік құбылыстар (электр өткізгіштігінің өзгеруі, ЭҚК-нің пайда болуы не электрондар эмиссиясы). Бұл құбылыс қатты денелерде, сұйықтықтарда, сондай-ақ газдарда да байқалады. Фотоэлектрлік құбылыстар қатарына рентген сәулелерінің фотоэффектісі мен ядролардың фотоэффекті де жатады. Қатты немесе сұйық денелердің жарық сәулесін (фотондарды) жұтуы нәтижесінде электрондардың бөлініп шығу құбылысы сыртқы фотоэффект делінеді.

Фотоэффект заңдары. Зерттеулердің анықтауынша - Фотоэлектрлік токтың күші оны тудыратын электромагниттік сәулеленудің қуатына пропорционал. - Фотоэлектрондарды максималды кинетикалық энергиясы түскен жарықтың түскен жиілігіне пропорционалды өседі және жарық қуатына тәуелді емес. - Егер жарықтың жиілігі алынған дене үшін белгілі бір жиіліктен төмен болса, фотоэффект байқалмайды. Осы тәжірибелік нәтижелерді фотоэффект заңдары деп атайды. Фотоэффект заңдары электромагниттік сәулеленудің зат электрондарымен

әсерлесу механизміне ешбір түрде сәйкес бола алмайды. Электромагниттік сәулелену зат бетіне түскенде, заттың үстіңгі қабатындағы электрондардың бәрі бірдей мәжбүрленген тербелісті бастау керек. Оң зарядталған атом энергиясынан босау үшін қажетті энергияны электрондар бұл жағдайда толқын энергиясы біраз уақыт болған соң ғана жиып алады. Сонымен фототоктың пайда болуы жарықтандыру пайда болған мезеттен біраз кешігуі керек. Тәжірибеде фототоктың ешқандай кешігуі байқалмайды. Классикалық теория бұған қоса фотоэффекттің қызыл шекарасы болуы және фотоэлектрондардың сәулелену қуатынан, яғни электромагниттік толқынның өріс амплитудасынан тәелсіздігін түсіндіре алмады

Фотоэффект үшін Эйнштейн теңдеуі

Фотон — электрмагниттік сәуленің (жарықтың) элементар бөлшегі. Фотон зарядсыз бейтарап (нейтрал) бөлшек. Ол вакуумде с=3108м/с жылдамдықпен тарайды. Оның энергиясы () жиілігімен () анықталады: =h/с, оның тыныштықтағы массасы m=0. Фотон электрмагниттік әсерлесуді тасымалдайтын бөлшек. Зарядталған бөлшектердің Фотондарды шығаруы немесе сіңіруі барлық электро-магниттік процестердің негізі болып табылады. Фотон туралы ұғым кванттық теория мен салыстырмалы теорияның даму барысында пайда болды. 1905 ж. А.Эйнштейн фотоэффект құбылысының заңдылықтарын түсіндіру үшін 1900 ж. нем. физигі М.Планк ашқан жарық кванттары туралы ұғымды пайдаланды. Жарықтың Фотондардан (кванттардан) тұратындығы люминесценц. құбылыстар мен фотохим. реакциялар арқылы дәлелденді. “Фотон” терминін ғылымға 1929 ж. америка ғалымы Г.Льюис енгізді. Фотон бозондарға жатады. Оның меншікті импульс моментінің (спинінің) қозғалыс бағытына проекциялары S=1. Классик. электрдинамикада оның бұл қасиетіне көлденең электро-магниттік толқындар сәйкес келеді. электро-магниттік әсерлесуден басқа Фотон гравитац. әсерлесуге де қатысады. Америка физигі А.Комптонның рентген сәулелерінің бос электрондардан шашырауын зерттейтін тәжірибесінде кванттық сәуле (фотон) шығару да зат бөлшектері сияқты кинематик. заңдарға (энергияның және импульстің сақталу заңдарына) бағынатындығы дәлелденді. Фотонның зарядталған лептондармен әсерлесуін (өзара бір күйден екінші күйге ауысуын) кванттық электрдинамика зерттейді.

Фотон дегеніміз – жарық бөлшегін айтамыз

Жарық – толқын ұзындығы 4•10-7- м болып келген электромагниттік толқын. Зарядталған электрондар – жарық шығарады. Ол үшін сырттан энергия қажет. Фотон – жарық бөлшегі.

Фотон энергиясы Е=һ•v-орнына =2π• v; Е = = һv Һ= 1,05 • 10-34Дж•с

Фотон массасы – Е=m•c2; Е=һ•v; m= ; [m0=0]

Фотон импульсі: Р=m•v=mc

Фотоэффекттің қызыл шегі әр бір зат үшін анықталған қандай да бір минимал жиілік бар, егер жарық жиілігі одан төмен болса фотоэффект байқалмайды. Ол жиілік фотоэффекттің қызыл шегі деп аталады.

Фотоэффекттің қолданылуы Электромагнитті сәулелендірудің әсерінен заттардан электрондардың ыршып шығуын фотоэлектрлік эффект немесе фотоэффект деп атайады. Фотоэффекттің үш түрі бар: сыртқы, ішкі және вентильді. Егер электрондар жарық түсірілген дененің бетінен қоршаған ортаға ыршып шықса, фотоэффект сыртқы деп аталады және ол металдарға тән.

Франк - Герц тәжірибесі. Франк-Герц тәжірибесі — атомның ішкі энергиясының үздіксіз өзгермейтіндігін, яғни белгілі бір дискреттік мәндер қабылдайтындығын (квантталатындығын) дәлелдейтін тәжірибе. Тәжірибені алғаш рет 1913 ж. неміс физиктері Дж. Франк пен Г.Герц жасады. Бұл тәжірибе Н.Бордың кванттық теориясын дәлелдеуде маңызды рөл атқарды. Тәжірибеде ток күшінің К катод пен С1 тор арасындағы үдетуші потенциалдар айырымына тәуелділігі зерттелді; С2 тор мен А анод арасына тежеуші кернеу түсірілген; Қ аймақта үдеген электрондар торлар арасындағы сынап буының (Л түтікшені толтырып тұрған) атомдарымен соқтығысатын ҚҚ аймаққа барады. Соқтығысқаннан кейін ҚҚҚ аймақтағы тежеушіпотенциалды жеңуге жеткілікті энергиясы бар электрондар анодқа түседі. Үдетуші потенциалды 4,9 В-қа дейін арттырғанда Г гальванометр тіркейтін ток күші монотонды артады. Демек, энергиясы 4,9 эВ электрондар атомдармен серпімді соқтығысады да, бірақ атомдардың ішкі энергиясын өзгертпейді. Егер V 4,9 В-тан артып кетсе (немесе одан еселік 9,8В, 14,7 В, мәндерден), Қ (V) қисық сызығында электрондардың атомдармен соқтығысуы серпімсіз болғандығын, яғни электрондар энергиясы атомдардың ішкі энергиясына ауысқандығын көрсететін құлдыраулар пайда болады. Энергияның 4,9 эВ-қа еселі мәндерінде электрондар әрбір атомға 4,9 эВ энергиясын бере отырып, олармен бірнеше рет серпімсіз соқтығыса алады. Демек Ф.-Г. т. негізгі энергет. күйдегі сынап атомдары жұта алатын энергияның ең аз мүмкін үлесі (энергияның ең аз кванты) 4,9 эВ екендігін көрсетті.

Ішкі фотоэффект (фотоөткізгіштік) кезінде жартылай өткізгіштер мен диэлектриктерге түскен жарық (фотон) оларда жұтылады да, сыртқа қарай электрондар бөлініп шықпайды. Сөйтіп, жартылай өткізгіштер мен диэлектриктердің электр өткізгіштігі өзгереді. Ішкі фотоэффектіні 1873 ж. америка физигі У.Смит байқаған. Жарық әсерінен кедергісі кемитін жартылай өткізгіштер фотокедергілер деп аталады. Металл электрод пен сұйық шекарасында байқалатын фотогальваникалық эффектіні 1839 ж. француз физигі А.Э. Беккерель ашты. Ал екі қатты дене шекарасындағы мұндай құбылысты 1876 ж. ағылшын физиктері У.Адамс пен Р.Дей байқаған. Екі заттың түйіскен жеріне жарық түсірілген кезде фотоэлектрлік қозғаушы күш пайда болады. Мұндай зат ретінде әр түрлі жартылай өткізгіштер (электрондық және кемтіктік) немесе жартылай өткізгіш пен металл алынады. Фотогальваник. эффектіге негізделіп жасалған фотоэлектрлік құрылғылар вентильді фотоэлементтер деп аталады.

Шредингер теңдеуі

Юнг әдісі. Ағылшын физигі Томас Юнг жарық толқындарының кеңістіктік когеренттігін алды. Ол S жарық көзінің алдына кішкентай саңылауы бар S1 тосқауылды орналастырды. Жарық толқындары ол саңылаудан өтіп, бірдей фазамен бір уақытта екі кішкене S2 және S3 саңылауларға жетеді. Бұл саңылаулар бір-біріне жақын және жарық көзіне қатысты симметриялы орналастырылған (4.10-сурет).Сондықтан S2 және S3 саңылаулары бір толқындық бетте жатыр деп есептеуге болады. Гюйгенс принципі бойынша толқындық беттің әрбір нүктесі екінші толқын көзі болып табылады.

Ядродағы нуклондардың байланыс энергиясы. Байланыс энергиясы — байланысқан жүйені (мысалы, атом, молекула, атом ядросы, т.б.), оны құрайтын бөлшектерге (құраушыларға) жіктеуге және оларды бір-бірінен арасында өзара әсер болмайтындай қашықтыққа алыстату үшін жұмсалатын энергия; біртұтас жүйе болып байланысқан бөлшектер жиынтығының сипаттамасы.

Байланыс энергиясының шамасы бөлшектер арасындағы өзара әсерге байланысты анықталады. Егер бөлшектер жиынтығы молекула құрайтын атомдар болса, онда Байланыс энергиясы ретінде химикалық байланыстың, ал бөлшектер жиынтығы ядро құрайтыннуклондар (протондар мен нейтрондар) болса, онда ядролық байланыстың энергиясы қарастырылады.

Байланыс энергиясы — теріс таңбалы шама. Өйткені байланысқан жүйенің түзілуі кезіндеэнергия бөлініп шығады. Байланыс энергиясының абсолют шамасы жүйе байланысының беріктілігін және жүйенің орнықтылығын сипаттайды. Басқаша айтқанда, Байланыс энергиясы артқан сайын жүйе берік болады, яғни жүйені оны құрайтын бөлшектерге жіктеу үшін жұмсалатын энергия да көп болады. Мысалы, молекулалардың химикалық Байланыс энергиясы бірнеше эВ болса, ядролық Байланыс энергиясы миллиондаған эВ-қа дейін жетеді. Сондықтан атом ядросы өте берік жүйе болып есептеледі..

Ядролық күштер , атом ядросын құрайтын нуклондардың арасына әсер ететін және ядроның құрылысы мен қасиеттерін (электрмагниттік күштермен бірге) анықтайды. Ядролық күштердің басқа күштерден (мысалы, гравитациялық және электр-магниттік күштер) өзгеше қасиеттері бар. Оларды қысқаша айтсақ төмендегідей: 1) ядродағы нуклондар арасында әсер ететін күштің шамасы атомның электрондық қабықтарында әсер ететін күштің шамасынан әлдеқайда артық. Сондықтан да нуклонды атом ядросынан сыртқа қарай бөлініп шығару үшін млн-даған эВ-қа тең энергия жұмсалуы керек. 2) Ядролық күштер электр-магниттік және гравитациялық күштерге қарағанда өте қысқа қашықтыққа әсер ететін күш болып есептеледі. Егер екі нуклонның арасындағы қашықтық 10–13 см-ден асса, онда ядролық күштердің шамасы нөлге дейін кемиді. Нуклондар арасындағы қашықтық артқан жағдайда, Ядролық күштердің шамасы кеми бастайды. Ядролық күштердің кенет кеми бастйтын қашықтығын ядролық күштердің әсер ету радиусы (r0~2–3× ×10–13 см) деп атайды. 3) Ядродағынуклондар өзіне жақын орналасқан нуклондармен ғана әсерлеседі. Ядролық заттың тығыздығы әр түрлі ядрода да шамамен бірдей. 4) Нуклондар арасындағы өзара әсер күші қашықтыққа ғана байланысты емес, сонымен бірге нуклондар спиндерінің бағдарлануына да байланысты. 5) Ядролық күштердің шамасы өзара әсерлесетін нуклондардың электрзарядына тәуелді емес. Ядролық күштердің дәйекті теориясы әзірше жасалып біткен жоқ. Алайда тәжірибелер ядродағы нуклондардың өзара әсерлері пиондар алмасу арқылы жүзеге асатынын дәлелдейді.

Телескоптың оптикалық схемасы

Лупаның оптикалық схемасы

Микроскоптың оптикалық схемасы