Влияние размера ключей на их криптостойкость

Интересно, что чем более совершенными становятся системы шифрования и связанные с ними средства ЭЦП, тем реже появляются сообщения о неопровержимых шифрах и об “абсолютных защитах”. Чем выше развита криптографическая культура общества, тем очевиднее тот факт, что абсолютных средств защиты не существует, и вопрос снятия любой защиты сводится лишь к вопросу об используемых технических средствах и затратах времени. Это вопрос чистой экономики. Если данные защищены любым несимметричным алгоритмом, то вопрос снятия защиты — это только вопрос времени, денег и экономической целесообразности.

Выше мы показали, что исходных данных для реконструкции закрытого ключа болеечем достаточно. Если для нее не находится никаких оригинальных методов, основанных на криптоанализе, то можно воспользоваться методом простого перебора.Он всегда приводит к решению задачи, хотя заранее не известно, когда это решение будет достигнуто. Продолжительность реконструкции определяется, во-первых, производительностью используемой вычислительной техники и, во-вторых, размером ключа.

Размер ключа измеряется в битах (двоичных разрядах). Чем он больше, тем, соответственно, больше времени необходимо на перебор возможных значений, но и тем продолжительнее работает алгоритм. Поэтому выбор оптимальной длины ключа — это вопрос баланса. Опять-таки он решается по-разному в зависимости от характера деятельности организации. То, что годится для гражданской переписки, не годится для банковских организаций и, тем более, неприменимо в деятельности служб, связанных с государственной безопасностью.

Совершенно просто оценивается криптостойкость симметричных ключей. Если, например, длина симметричного ключа составляет 40 бит (такое шифрование называют слабым), то для его реконструкции надо перебрать 240 чисел. Если для этого использовать несколько современных передовых компьютеров, то задача решается быстрее, чем за сутки. Это недешевое, но вполне возможное мероприятие.

Если, например, длина ключа составляет 64 бита, то необходима сеть из нескольких десятков специализированных компьютеров, и задача решается в течение нескольких недель. Это крайне дорогое мероприятие, но технически оно возможно при современном уровне развития техники.

Сильным называют шифрование с длиной симметричного ключа 128 бит. На любом современном оборудовании реконструкция такого ключа занимает времени в миллионы раз больше, чем возраст Вселенной. Это технически невозможное мероприятие, если нет каких-либо дополнительных данных, например сведений о харак­терных настройках средства ЭЦП, использованного при генерации ключа. Теоретически такие сведения у “взломщика” могут быть (например, полученные агентурными методами), и тогда реконструкция даже сильного ключа может быть технически возможной.

Для ключей несимметричного шифрования получить столь простую формулу, как для симметричных ключей, как правило, не удается. Алгоритмы несимметричного шифрования еще не до конца изучены (в этом нет ничего удивительного, поскольку по сей день не изучены даже свойства таких “простых” математических объектов, как простые числа). Поэтому при использовании несимметричного шифрования говорят об относительной криптостойкости ключей. Понятно, что, как и для симметричных ключей, их криптостойкость зависит от длины, но выразить это соотношение простой формулой для большинства алгоритмов пока не удалось. Обычно относительную криптостойкость оценивают по эмпирическим данным, полученным опытным путем. Результаты оценок для разных алгоритмов могут быть разными, например такими, как указано в таблице 9.1.

Таблица 9.1.