Волновой процесс электрона. Уравнение волны. Интенсивность волны.

Прежде всего, найдем вы­ражение для плотности упругой (потенциальной) энергии рас­тянутого (или сжатого) стержня. Приложим к торцу стержня, другой конец которого закреплен, растягивающую силу F(x) и будем медленно увеличивать ее от 0 до значения F0. Удлинение стержня при этом будет меняться от 0 до x. По закону Гука F(x) = κх, где κ — коэффициент упругости. Работа силы F(x) в этом процессе

Эта работа идет на увеличение упругой энергии U стержня, значит

(3.2.13)

Плотность же упругой энергии wn = U/Sl, где S и l — пло­щадь поперечного сечения и длина стержня. Преобразуем вы­ражение (3.2.13), учитывая, что k = F = σS, σ = Εε и ε = . Тогда

Отсюда видно, что плотность упругой энергии

(3.2.14)

При прохождении продольной волны в стержне каждая еди­ница объема его обладает как потенциальной энергией упругой деформации wπ,так и кинетической энергией wk= .Плотность полной энергии

. (3.2.15)

Для тонкого стержня Ε = ρV2, согласно (3.2.3), и выражение (3.2.15) можно переписать так:

(3.2.16)

Можно показать, что оба слагаемых равны друг другу, т. е. плотности кинетической и упругой энергии оди­наковы и изменяются синфазно. Поэтому мы имеем в результате

(3.2.17)

В частности, для гармонической волны = cοs(ωt - kx)

(3.2.18)

Соответствующее распределение w(x) вдоль стержня в некото­рый момент показано на рис.3.2.2.

 

Среднее значение плотности энергии за период (или за время значительно большее периода колебаний) равно Рис.3.2.2.

(3.2.19)

поскольку среднее значение квадрата синуса равно ½.

Полученные формулы справедливы и для упругих волн в жидкостях и газах.

Так как энергия перемещается в среде вместе с возмущением, вводят понятие потока энергии Ф. Это количество энергии, переносимое волной через определен­ную поверхность S в единицу времени:

(3.2.20)

где dW — энергия, переносимая через данную поверхность за время dt.

Поток энергии в разных точках поверхности S может иметь различную интенсивность. Для характеристики этого обстоя­тельства вводят понятие плотности потока энергии. Это по­ток энергии через единичную площадку, перпендикулярную к направлению переноса энергии:

(3.2.21)

где = dW/dt, a dW — это энергия, заключенная внутри косого цилиндра с основанием площадью dS и образующей длиной Vdt, где V — ско­рость переноса энергии (или скорость волны). Размеры этого цилиндра должны быть настолько малы, чтобы во всех его точ­ках плотность энергии w была бы оди­наковой. Тогда dW = wdV, dV— объем данного цилиндра, и мы можем записать: Рис.3.2.3.

С учетом этого соотношения выражение (3.2.21) примет вид:

(3.2.22)

Для определения плотности потока и его направления вводят вектор Умова- Пойнтинга :

(3.2.23)

где — вектор скорости, нормальный к волновой поверхности в данном месте. Для гармонической волны = (ω/k) .

В случае монохроматической волны вектор , как и плот­ность энергии, изменяется со временем по закону квадрата си­нуса (3.2.18). Поэтому среднее по времени значение модуля вектора Умо­ва - Пойнтинга с учетом (3.2.19) можно записать как

(3.2.24)

Это выражение справедливо для волн любого вида — плоской, сферической, цилиндрической, затухающих и др.

Среднее по времени значении модуля плотности потока энергии на­зывают интенсивностью волны: I=<j>.

Зная вектор Умова - Пойнтинга во всех точках интересующей нас поверх­ности S, можно найти поток энергии сквозь эту поверхность. Для этого разобьем мысленно поверхность S на элементарные участки dS. Поток энергии через этот участок, согласно (3.2.21), есть

где jn — проекция вектора на нормаль к элементу поверхности dS. Тогда полный поток энергии сквозь поверхность S

(3.2.25)

здесь . Выражение (3.2.25) означает, что поток энергии равен потоку вектора сквозь эту поверхность S.