Классификация стекол по назначению
Неорганические стекла классифицируются по виду стеклообразующего вещества, виду модификаторов, технологии изготовления и назначению.
По виду стеклообразующего вещества неорганические стекла делятся на силикатные (SiO2), алюмосиликатные (А1203–SiO2), боросиликатные (В203–SiO2), алюмоборосиликатные (А1203–В205–SiO2), алюмофосфатные (А1203–Р205), халъкогенидные (например, Аs31Gе30Sе21Те180), галогенидные и другие стекла.
По виду модификаторов различают щелочные, бесщелочные и кварцевые неорганические стекла. Прочность щелочных стекол под действием влаги уменьшается вдвое, так как вода выщелачивает стекло. При этом, образуются щелочные растворы, которые расклинивают стекло, вызывая появление микротрещин в поверхностном слое.
По технологии изготовления неорганическое стекло может быть получено выдуванием, литьем, штамповкой, вытягиванием в листы, трубки, волокна и др. Стекло выпускается промышленностью в виде готовых изделий, заготовок и отдельных деталей.
По назначению неорганические стекла делятся на техническое, строительное и бытовое (стеклотара, посудное, бытовое и др.).
Техническое стекло по области применения делится на электротехническое, транспортное; оптическое, светотехническое, термостойкое, тугоплавкое, легкоплавкое, химико-лабораторное и др.
Электротехническое стекло. Высокие значения удельного электросопротивления, большая электрическая прочность (16–50 кВ/мм), низкие значения диэлектрических потерь (tgδ=0,0018–0,0175) и сравнительно высокая диэлектрическая проницаемость (ε=3,5–16), которая повышается при увеличении концентрации РbО или ВаО. При нагреве в интервале температур 200–400 °С удельное электросопротивление уменьшается в 108–1010 раз, что связано с увеличением подвижности щелочных ионов, и стекло теряет свои изолирующие свойства. Оксиды тяжелых металлов – свинца и бария уменьшают подвижность ионов и снижают потери.
При впаивании металла в стекло, при сваривании стекол разного состава в стекле появляются термические напряжения из-за различия температурных коэффициентов линейного расширения. Если температурные коэффициенты обоих материалов близки, то спаи стекла с материалом называются согласованными спаями, а если различны – несогласованными спаями.
Как диэлектрик используют для колб осветительных ламп и радиоламп, в электровакуумных устройствах, для изоляторов, для герметизации интегральных схем. Так, в виде тонкой (до 3–4 мкм) пленки стекло используют в качестве прочной, нетрескающейся и теплостойкой изоляции на металлических проводах и термопарах. Халькогенидное стекло используется для герметизации полупроводниковых приборов. Электропроводящие (полупроводниковые) стекла: халькогенидные и оксидные ванадиевые – находят широкое применение в качестве термисторов, фотосопротивлений.
Электротехнические стекла в зависимости от величины температурного коэффициента линейного расширения разделяются на платиновые (С89-2), молибденовые (С49-1) и вольфрамовые (С38-1). Каждая группа стекол используется для согласованных спаев с Мо, W и сплавами Fe-N. В марке электротехнического стекла указывается значение температурного коэффициента линейного расширения.
Транспортное стекло. В машиностроении эффективно применяется как конструкционный материал при условии нейтрализации хрупкости, что достигается его закалкой, как правило, в воздушном потоке.
Специфическими свойствами стекол являются их оптические свойства: светопрозрачность, отражение, рассеяние, поглощение и преломление света. Коэффициент преломления таких стекол составляет 1,47–1,96, коэффициент рассеяния находится в интервале 20–71.
Разновидностями транспортного стекла являются триплексы и термопан, применяемые для остекления в транспортных средствах, скафандрах.
Триплексы – композиционный материал, получаемый из двух листов закаленного силикатного (или органического) стекла толщиной 2–3 мм, склеенных прозрачной эластичной полимерной (обычно из поливинилбутираля) пленкой. При разрушении триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке.
Термопан – трехслойное стекло, состоящее из двух листов закаленных стекол и воздушного промежутка между ними. Эта воздушная прослойка обеспечивает теплоизоляцию.
Оптическое и светотехническое стекло. Оптические свойства стекол зависят от их окраски, которая определяется химическим составом стекол, а также от состояния поверхности изделий. Оптические изделия должны иметь изотропную, свободную от напряжений структуру, которую получают отжигом, и гладкие полированные поверхности.
Обычное неокрашенное листовое стекло пропускает до 90%, отражает примерно 8%и поглощает около 1% видимого и частично инфракрасного света; ультрафиолетовое излучение поглощается почти полностью. Кварцевое стекло является прозрачным для ультрафиолетового излучения. Светорассеивающие стекла содержат в своем составе фтор. Стекло с большим содержанием РbО поглощает рентгеновские лучи.
Оптические стекла, применяемые в оптических приборах и инструментах, подразделяют на кроны, отличающиеся малым преломлением (nд=1,50), и флинты (nд=1,67) – с высоким содержанием оксида свинца.
Термостойкое и тугоплавкое стекло.
«Пирекс» – термостойкое стекло на основе SiO2 (80,5%) с повышенным содержанием В203 (12%), Na20 (4%), а также оксидами алюминия, калия и магния.
«Мазда» – тугоплавкое стекло на основе SiO2 (57,6%) с оксидами алюминия (25%), кальция (7,4%), магния (8%) и калия. «Пирекс» и «Мазда» используются для изготовления изделий, использующихся при повышенных температурах эксплуатации: оболочки термометров, смотровые стекла и др.
Легкоплавкое стекло. Эти стекла изготовляют на основе РbО (70%) с добавлением В2О3 (20%) или В203 (68,8%) с добавлением ZnО (28,6%) и Na2O (2,6%); используются для изготовления эмалей, глазури и припоев для спаивания стекла.
Строительное стекло выпускают следующих видов: листовое, облицовочное и изделия и конструкции из стекла.
Листовое стекло изготавливают из стеклянной массы, в состав которой входят 71–73% SiO2, 13,5–15% Na2O, до 10% СаО, до 4% МgО и до 2% А1203. Масса 1 м2 листового стекла 2–5 кг. Светопропускание – не менее 87%.
Листовое стекло вырабатывают трех сортов и в зависимости от толщины шести размеров (марок): 2; 2,5; 3; 4; 5 и 6 мм. Сорт листового стекла определяется наличием дефектов, к которым относятся: полосность – неровность на поверхности; свиль – узкие нитевидные полоски; пузыри – газовые включения и др. Ширина листов стекла 250–1600 мм, длина 250–2200 мм.
Промышленностью вырабатываются также специальные виды листового стекла: витринное (полированное), теплопоглощающее, увиолевое (пропускающее 25–75% ультрафиолетовых лучей), закаленное, архитектурно-строительное и др.
Листовое стекло – основной вид стекла, используемый для остекления оконных и дверных проемов, витрин, наружной и внутренней отделки зданий.
Облицовочное стекло применяют для отделки фасадов и внутренних помещений здания. К потребительским свойствам такого стекла относятся высокая декоративность (яркие цвета, блестящая поверхность), большая атмосферостойкость и долговечность. К группе облицовочных стекол относятся:
стемалит – листовой строительный материл из закаленного полированного (толщиной 6–12 мм) стекла, покрытого с внутренней стороны непрозрачной (глухой) керамической краской. Покрытие защищается со стороны помещения тонким слоем алюминия, нанесенным в вакууме. Применяется для внутренней и наружной облицовки зданий;
марблит – листовой строительный материал толщиной 12 мм из цветного глушеного стекла с полированной лицевой поверхностью и рифленой тыльной, может имитировать мрамор;
стеклянная эмалированная плитка – изготавливается из отходов листового стекла (стеклянная эмаль), наплавляемых на поверхность стекла, нарезанного на требуемые размеры (150x150, 150x70 мм при толщине 3–5 мм);
стеклянная мозаика – ковровая мозаика в виде мелких квадратных плиток (20x20 или 25x25 мм) из непрозрачного (глушеного) цветного стекла, выложенных в однотонные или мозаичные ковры;
смальта – кубики или пластинки толщиной 10 мм из цветной глушеной стекломассы, полученные отливкой или прессованием; применяется для изготовления мозаик.
Изделия и конструкции из стекла. К наиболее распространенным изделиям и конструкциям из стекла в строительной промышленности относятся:
стеклоблоки – полые блоки из двух отформованных половинок, сваренных между собой. Светопропускание–не менее 65%, светорассеяние–около 25% (светорассеяние повышают рифлением внутренней стороны блоков), теплопроводность – 0,4 Вт/(м·К). Применяются для заполнения световых проемов в наружных стенах и устройства светопрозрачных покрытий и перегородок;
стеклопакеты – два-три листа стекла, соединенных по периметру металлической рамкой (обоймой), между которыми создана герметически замкнутая воздушная полость. Применяются для остекления зданий;
стеклопрофилит – крупногабаритные строительные панели из профильного стекла, изготовляемые методом непрерывного проката коробчатого, таврового, швеллерного и полукруглого профилей. Стеклопрофилит может быть армированным и неармированным, бесцветным и цветным. Применяется для устройства светопрозрачных ограждений зданий и сооружений.
Стекловолокно – волокнистый материал, получаемый из расплавленной стекломассы. Наиболее широко применяются бесщелочное алюмо-боросиликатное Е-стекло, а также высокопрочное стекло на основе оксидов: SiO2, А1203, МgO. Диаметр стекловолокна колеблется от 0,1 до 300 мкм. Форма сечения может быть в виде крута, квадрата, прямоугольника, треугольника, шестиугольника. Выпускаются и полые волокна. По длине волокно делится на штапельное (от 0,05 до 2–3 м) и непрерывное. Плотность стекловолокна 2400–2600 кг/м3. Прочность элементарных стеклянных волокон в несколько десятков раз выше объемных образцов стекла: прочность на растяжение достигает 1500–3000 МПа для непрерывных волокон диаметром 6–10 мкм. Стекловолокно имеет высокие тепло-, электро- и звукоизоляционные свойства, оно термо- и химически стойко, негорюче, не гниет.
Поверхность стеклянных волокон при транспортировке и различных видах переработки замасливают для предотвращения истирания, так как от состояния поверхности волокон зависит их прочность. Из стекловолокна изготавливают стекловату, ткани и сетки, а также нетканые материалы в виде жгутов и холстов, стекломатов.
Стекловата – материал из стеклянных волокон, диаметр которых для изготовления теплоизоляционных изделий не должен превышать 21 мкм. Структура ваты должна быть рыхлой – количество прядей, состоящих из параллельно расположенных волокон, не более 20% по массе. Плотность в рыхлом состоянии не должна быть более 130 кг/м3. Теплопроводность – 0,05 Вт/(м·К) при 25 °С. Стеклянную вату из непрерывного волокна применяют для изготовления теплоизоляционных материалов и изделий при температурах изолируемых поверхностей от -200 до +450°С.
Стекловата из супертонкого волокна имеет плотность 25 кг/м3, теплопроводность 0,03 Вт/(м·К), температурах эксплуатации от -60 до +450°С, звукопоглощение 0,65–0,95 в диапазоне частот 400–2000 Гц. Стекловата из супертонкого волокна, а также изделия на ее основе используются в строительстве в качестве звукоизоляционного материала.
Стекломаты (АСИМ, АТИМС, АТМ-3) – материалы, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются при температурах 60–600°С в качестве армирующих элементов в композиционных материалах.
Стеклорубероид и стекловойлок – рулонные материалы, получаемые путем двухстороннего нанесения битумного (битумно-резинового или битумно-полимерного) вяжущего вещества, соответственно, на стеклово-локнистый холст или стекловойлок и покрытия с одной или двух сторон сплошным слоем посыпки. Сочетание биостойкой основы и пропитки с повышенными физико-механическими свойствами позволяет достичь долговечности для стеклорубероида около 30 лет.
В зависимости от вида посыпки, предотвращающей слипание при хранении в рулонах, и назначения стеклорубероид выпускают следующих марок: С-РК (с крупнозернистой посыпкой), С-РЧ (с чешуйчатой посыпкой) С-РМ (с пылевидной или мелкозернистой посыпкой). Применяют стеклорубероид для верхнего и нижнего слоев кровельного ковра и для оклеенной гидроизоляции.
Гидростеклоизол – гидроизоляционный рулонный материал, предназначенный для гидроизоляции железобетонных обделок туннелей (марка Т), пролетных строений мостов, путепроводов и других инженерных сооружений (марка М).
Гидростеклоизол состоит из стеклоосновы (тканой или нетканой сетчатки, дублированной стеклохолстом), покрытой с обеих сторон слоем битумной массы, в которую входят битум, минеральный наполнитель (около 20%) с молотым тальком, магнезитом, а также пластификатором. Отличается помимо высокой водонепроницаемости хорошими прочностными показателями при растяжении в продольном направлении. Он выдерживает разрывную нагрузку при высшей категории качества 735 Н. Теплостойкость – 60–65 °С, температура хрупкости – от -20 до -10°С.
Гидростеклоизол наклеивают без применения мастик – равномерным плавлением (например, используя пламя газовой горелки) его поверхности.
Пеностекло (ячеистое стекло) – ячеистый материал, получаемый спеканием тонко измельченного стекольного порошка и порообразователя. Вырабатывают из стекольного боя либо используют те же сырьевые материалы, что и для производства других видов стекла: кварцевый песок, известняк, соду и сульфат натрия. Порообразователями могут быть кокс и известняк, антрацит и мел, а также карбиды кальция и кремния, выделяющие при спекании углекислый газ, образующий поры.
Пеностекло имеет специфическое строение – в материале стенок крупных пор (0,25–0,5 мм) содержатся мельчайшие микропоры, что обусловливает малую теплопроводность (0,058–0,12 Вт/(м·К)) при достаточно большой прочности, водостойкости и морозостойкости. Пористость различных видов пеностекла составляет 80–95%; плотность 150–250 кг/м3; прочность 2–6 МПа. Обладает высокими тепло- и звукоизоляционными свойствами. Пеностекло – несгораемый материал с высокой (до 600 °С) теплостойкостью. Легко обрабатывается (пилится, шлифуется); оно хорошо склеивается, например, с цементными материалами.
Щиты из пеностекла применяют для теплоизоляции ограждающих конструкций зданий (стен, перекрытий, кровель и др.), в конструкциях холодильников (изоляция поверхностей с температурой эксплуатации до 180 °С), для декоративной отделки интерьеров. Из пеностекла с открытыми порами изготовляют фильтры для кислот и щелочей.
Стеклопор получают путем фануляции и вспучивания жидкого стекла с минеральными добавками (мелом, молотым песком, золой ТЭС и др.). Выпускается трех марок: СЛ ρ0=15–40 кг/м3, λ=0,028–0,035 Вт/(м·К); Л ρ0=40–80 кг/м3, λ=0,032–0,04 Вт/(м·К); ρ 0=80–120 кг/м3, λ=0,038–0,05Вт/(м·К).
В сочетании с различными связующими веществами стеклопор используют для изготовления штучной, мастичной и заливочной теплоизоляции. Наиболее эффективно применение стеклопора в ненаполненных пенопластах, так как введение его в пенопласт позволяет снизить расход полимера и значительно повысить огнестойкость теплоизоляционных изделий.
Армированное стекло – конструкционное изделие, получаемое методом непрерывного проката неорганического стекла с одновременным закатыванием внутрь листа металлической сетки из отожженной хромированной или никелированной стальной проволоки. Это стекло имеет предел прочности при сжатии 600 МПа, повышенную огнестойкость, безосколочно при разрушении, светопропускаемость – более 60%. Может иметь гладкую, кованую или узорчатую поверхность, быть бесцветным или цветным.
Армированное стекло применяют для остекления фонарей верхнего света, оконных переплетов, устройства перегородок, лестничных маршей и др.