Сжатые элементы
На сжатие работают стойки, подкосы, верхние пояса и отдельные стержни ферм. В сечениях элемента от сжимающего усилия N, действующего вдоль его оси, возникают почти одинаковые по величине сжимающие напряжения σ (эпюра прямоуголная).
Стандартные образцы при испытании на сжатие имеют вид прямоугольной призмы с размерами, указанными на рис. 2.
Древесина работает на сжатие надежно, но не вполне упруго. Примерно до половины предела прочности рост деформаций происходит по закону близкому к линейному, и древесина работает почти упруго. При росте нагрузки увеличение деформаций все более опережает рост напряжений, указывая на упруго-пластический характер работы древесины.
Разрушение образцов без пороков происходит при напряжениях, достигающих 44 МПа, пластично, в результате потери устойчивости ряда волокон, о чем свидетельствует характерная складка. Пороки меньше снижают прочность древесины, чем при растяжении, поэтому расчетное сопротивление реальной древесины при сжатии выше и составляет для древесины 1 сорта Rс=14÷16 МПа, а для 2 и 3 сортов эта величина немного ниже.
Расчет на прочность сжатых элементов производится по формуле:
σ , где
Rс – расчетное сопротивление сжатию.
Аналогичным образом рассчитываются и сминаемые по всей поверхности элементы. Сжатые стержни, имеющие большую длину и не закрепленные в поперечном направлении должны быть, помимо расчета на прочность, рассчитаны на продольный изгиб. Явление продольного изгиба заключается в том, что гибкий центрально-сжатый прямой стержень теряет свою прямолинейную форму (теряет устойчивость) и начинает выпучиваться при напряжениях, значительно меньших предела прочности. Проверку сжатого элемента с учетом его устойчивости производят по формуле:
σ , где
– расчетная площадь поперечного сечения,
φ – коэффициент продольного изгиба.
принимается равной:
1. При отсутствии ослаблений = ,
2. При ослаблениях, не выходящих на кромки, если площадь ослаблений не превышает 25% , = ,
3. То же, если площадь ослаблений превышает 20% , =4/3 ,
1. При симметричных ослаблениях, выходящих на кромки = ,
При несимметричном ослаблении, выходящем на кромки, элементы рассчитывают как внецентренно сжатые.
Коэффициент продольного изгиба φ всегда меньше 1, учитывает влияние устойчивости на снижение несущей способности сжатого элемента в зависимости от его расчетной максимальной гибкости λ.
Гибкость элемента равна отношению расчетной длины l0 к радиусу инерции сечения элемента:
; .
Расчетную длину элемента l0 следует определять умножением его свободной длины l на коэффициент μ0:
l0=l μ0, где
коэффициент μ0 принимается в зависимости от типа закрепления концов элемента:
- при шарнирно закрепленных концах μ0=1;
- при одном шарнирно закрепленном, а другом защемленном μ0=0,8;
- при одном защемленном, а другом свободном нагруженном конце μ0=2,2;
- при обоих защемленных концах μ0=0,65.
Гибкость сжатых элементов ограничивается с тем, чтобы они не получились недопустимо гибкими и недостаточно надежными. Отдельные элементы конструкций (отдельные стойки, пояса, опорные раскосы ферм и т.п.) должны иметь гибкость не более 120. Прочие сжатые элементы основных конструкций – не более 150, элементы связей – 200.
При гибкости более 70 (λ>70) сжатый элемент теряет устойчивость, когда напряжения сжатия в древесине еще невелики и она работает упруго.
Коэффициент продольного изгиба (или коэффициент устойчивости), равный отношению напряжения в момент потери устойчивости σкр к пределу прочности при сжатии Rпр, определяют по формуле Эйлера с учетом постоянного отношения модуля упругости древесины к пределу прочности:
, где
А=3000 – для древесины,
А=2500 – для фанеры.
При гибкостях, равных и меньших 70 (λ≤70) элемент теряет устойчивость, когда напряжения сжатия достигают упругопластической стадии и модуль упругости древесины понижается. Коэффициент продольного изгиба при этом определяют с учетом переменного модуля упругости по упрощенной теоретической формуле:
, где
=0,8 – коэффициент для древесины;
=1 – коэффициент для фанеры.
При подборе сечения используют формулу расчета на устойчивость, предварительно задаваясь величиной λ и φ.