Развитое логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя учащихся искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и сути их доказательств, изучать специфику работы творческой мысли выдающихся ученых. А. Я. Хинчин видит воспитательный эффект уроков математики в том, что специфическая для математики логическая строгость и стройность умозаключений призвана воспитывать в учащихся общую логическую культуру мышления, и основным моментом воспитательной функции математического образования он считает развитие у учащихся способностей к полноценности аргументации. В обыденной жизни и в ряде естественнонаучных дискуссий аргументацию почти не удается сделать исчерпывающей, в математике же дело обстоит иначе: «Здесь аргументация, не обладающая характером полной, абсолютной исчерпанности, оставляющая хотя бы малейшую возможность обоснованного возражения, беспощадно признается ошибочной и отбрасывается как лишенная какой бы то ни было силы... Изучая математику, школьник впервые в своей жизни встречает столь высокую требовательность к полноценности аргументации»23. Школьники приучаются к взаимной критике; ученик, который «отобьется» от всех возражений своих товарищей, почувствует, что именно логическая полноценность аргументации была тем оружием, которое дало ему эту победу. А раз почувствовав это, он неизбежно научится уважать это оружие и, даже находясь в других ситуациях (в споре с другими или в своем «одиноком мышлении»), будет искать точной, полноценной аргументации, что значительно повысит его логическую культуру. А. Я. Хинчин сформулировал некоторые конкретные требования, выполнение которых обеспечивает полноту аргументации. Среди них борьба против незаконных обобщений и необоснованных аналогий, борьба за полноту дизъюнкций, за полноту и выдержанность классификаций.