Сочетания
В тех случаях, когда не имеет значения порядок элементов в подмножестве некоторого множества, а лишь его состав, говорят о сочетаниях. К сочетаниям без повторений приводит следующая задача комбинаторики.
Сколько -элементных подмножеств с различными элементами можно составить из элементов -множества ?
Такие подмножества называют сочетаниями без повторений из элементов по или короче -сочетаниями, а их число обозначают (от французского слова combinaison – сочетание). Другими словами, сочетаниями без повторений называется неупорядоченная -выборка, в которой элементы не повторяются.
Формулу для числа сочетаний легко получить из формулы (2) для числа размещений. Выберем какое-нибудь -элементное подмножество . Его можно упорядочить способами, а число таких подмножеств есть . Тогда справедлива формула
, (5)
откуда
. (6)
Пример 5. Сколько всего партий играется в шахматном турнире с участниками?
Ответ: , так как каждая партия однозначно определяется двумя ее участниками.
Пусть множество состоит из элементов различных типов: . Множество , составленное из , в котором элементы могут повторяться, называется мультимножеством. Для задания мультимножества надо указать число вхождений в него каждого элемента:
,
где – мощность мультимножества.
Число мультимножеств мощности , составленных из элементов -множества , называют сочетаниями с повторениями и обозначают . Другими словами, сочетаниями с повторениями называется неупорядоченная -выборка, в которой элементы могут повторяться.
. (7)
Пример 6. В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?
Решение. Мощность мультимножества , число различных элементов . Число способов покупки пирожных равно .