Адаптивные системы с переменной структурой
В системах с переменной структурой за счет нелинейного сочетания различных линейных структур удается организовать специфическое вырожденное движение – скользящий режим, или режим перехода от движения, соответствующего одной линейной структуре, к движению, соответствующему другой линейной структуре, с помощью логического переключения связей в системе в зависимости от ее фазового состояния. Такой переход осуществляется с высокой частотой, в пределе стремящейся к бесконечности. После возникновения скользящего режима движение системы происходит вдоль границы переключения и становится независимым от параметров управляемого объекта. Если параметры объекта изменяются в процессе функционирования системы, то такие изменения не оказывают влияния на динамические свойства системы с переменной структурой, находящейся в скользящем режиме. Следовательно, организуя в системе с переменной структурой скользящий режим, удается добиться независимости ее движения от параметрических возмущений.
Обучающиеся системыявляются наиболее сложным и пока мало изученным классом адаптивных систем. Такие системы создаются на основе принципа обучения, заключающегося в постепенном накоплении опыта формирования поведения системы при высокой степени неопределенности ее исходных состояний, по результатам которого происходит улучшение функционирования системы. Характер накопления опыта при обучении весьма многообразен, например опыт может быть накоплен положительный или отрицательный, систематизированный или случайный, собственный или привнесённый, имитационный (искусственный) или естественный и т.д. Однако у всех способов накопления опыта есть достаточно общая черта – постепенное выделение “области знаний” из всей совокупности “незнания”. Поэтому в теории обучающихся систем эта особенность нашла отражение в достаточно быстро развивающемся направлении, связанном с созданием автоматических систем классификации или распознаванием образов. Под классификацией или распознаванием образов здесь понимается установление по результатам накопленного опыта границ между определёнными классами сложных ситуаций. Задачи распознавания и классификации встречаются часто не только в технических приложениях, но и в таких областях, как медицинская диагностика, геологическая разведка месторождений прогнозирование погоды и т.д.
Задача автоматического обучения классификации формулируется следующим образом. Каждой возможной ситуации из множества рассматриваемых ставится в соответствие точка некоторого пространства x. Заранее известно, что в пространстве х необходимо выделить две или большее число областей или классов ситуаций. Расположение границ между областями неизвестно и нет определенных правил, по которым можно определить принадлежность той или иной точки любой из заданных областей. Цель обучения заключается в построении поверхности, разделяющей предъявляемые точки из указанного множества на заданное число классов. Принципиально существует два подхода к обучению такому разделению. В первом случае, при обучении с поощрением, классифицирующему автомату предъявляют ряд случайных точек из множества в пространстве х и сообщают информацию о принадлежности этих точек определенным классам. После определенного цикла обучения на таких примерах автомат строит разделяющую поверхность и может в дальнейшем отличать принадлежность разным классам не только предъявленных ему точек-примеров, но и любых других точек в пространстве х.
В случае обучения без поощрения информация р принадлежности точек разделяемым классам отсутствует. Здесь автомат по наблюдению предъявляемых точек определят факт компактного расположения нескольких из них и затем строит разделяющие поверхности на основе выбранной меры близости компактных групп точек к разделяющей поверхности.