Вопрос 1. Электромеханические приборы

По физическому принципу действия, положенному в основу построения и конструктивному исполнению, электромеханические приборы относят к группе аналоговых средств измерения, показания которых являются непрерывной функцией измеряемой величины.

Электромеханические приборы непосредственной оценки измеряемой физической величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет производить измерение наиболее информативного параметра сигнала без методических ошибок. Электромеханические приборы строят по обобщенной струк­турной схеме, представленной на рис. 1.

 

Рис. 1 Обобщенная струк­турная схема электромеханических приборов

 

Измерительная схема электромеханического прибора содержит совокупность сопротивлений, индуктивностей, емкостей и других элементов электрической цепи прибора и осуществляет количественное или качественное преобразование входной величины х в электрическую величину х', на которую реагирует измерительный механизм. Механизм преобразует электрическую величину х' в механическое угловое или линейное перемещение а, значение которого отражается на шкале отсчетного устройства прибора, проградуированной в единицах измеряемой величины N(x). Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно, определенное отклонение α. При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий: температуры окружающей среды, частоты питающей сети и других факторов.

Классификацию электромеханических приборов проводят на основании типа измерительного механизма.

Наиболее распространены в практике радиотехнических измерений следующие системы: магнитоэлектрическая, электромагнитная, электродинамическая, электростатическая.

Данные измерительные системы представлены в табл. 3.2, где приведены также формулы передаточной функции (уравнения шкалы) измерительного механизма и ряд его технических характеристик. В добавление помещенным в табл. 1 сведениям и рисункам сделаем следующие пояснения.

Таблица 1. Схемы приборов

 

Магнитоэлектрическая система. В данной системе измерительный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, сделано равномерным за счет особой конфигурации магнитопровода. Под воздействием протекающего тока / рамка вращается в магнитном поле, угол поворота а ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:

α=Iψ0/W

где ψ0 — удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W — удельный противодействующий момент, создаваемый специальной пружинкой.

Для расширения пределов измерения амперметров и вольтметров применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно измерительным механизмам в схемы этих приборов.

 

Гальванометры

Особую группу измерителей силы тока представляют высокочувствительные магнитоэлектрические приборы — нуль-индикаторы, называемые гальванометрами. Задача гальванометров показать наличие или отсутствие тока в цепи, поэтому они работают в начальной точке шкалы и должны обладать большой чувствительностью.

Гальванометры снабжают только условной шкалой. Поскольку чувствительность гальванометров очень высока, их градировочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому при выпуске на производстве чувствительные гальванометры не градуируют в единицах измеряемой физической величины и им не присваивают классы точности (не нормируют по классам точности).

В качестве же метрологических характеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивление рамки. Чувствительность гальванометров выражается в миллиметрах или делениях шкалы (например, S,≈ 109 мм/А). Такая высокая чувствительность достигается за счет особой конструкции прибора. Современные гальванометры позволяют измерять токи 10-5... 1012 А и напряжения до 10-4В.

Электромагнитная система

Принцип действия этой системы основан на взаимодействии катушки с ферромагнитным сердечником. Ферромагнитный сердечник втягивается в катушку при любой полярности тока. Это обусловлено тем, что ферромагнетик располагается в магнитном поле так, чтобы поле усилилось. Следовательно, прибор электромагнитной системы может работать на переменном токе. Однако он является низкочастотным, так как с ростом частоты сильно возрастает индуктивное сопротивление катушки.

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возможность градуировки приборов, предназначенных для измерений в цепях переменного тока и на постоянном токе. Недостатки приборов — большое потребление энергии, невысокая точность, малая чувствительность и сильное влияние магнитных полей. Приборы электромагнитной системы применяют в основном в качестве щитовых амперметров и вольтметров переменного тока промышленной частоты. Класс точности щитовых приборов составляет 1,5 и 2,3.

Электродинамическая система — измерительный механизм содержит две измерительные катушки: неподвижную и подвиж­ную. Принцип действия основан на взаимодействии катушек, электромагнитные поля которых взаимодействуют в соответствии с формулой:

где Мвр — вращающий момент; I1, — ток через неподвижную катушку; I2 — ток через подвижную катушку; Θ — фазовый сдвиг между синусоидальными токами; М — коэффициент взаимной индуктивности катушек.

На основе электродинамического механизма в зависимости от схемы соединения обмоток выполняют вольтметры, амперметры, ваттметры. Достоинством электродинамических вольтметров и амперметров является высокая точность на переменном токе. Пределосновной приведенной погрешности может составлять 0,1... 0,2 %, что является наилучшим достижимым показателем для измерительных приборов переменного тока. Электродинамические приборы используют как образцовые лабораторные измерительные приборы.

Электростатические приборы — принцип действия электростатического механизма основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, за­крепленная вместе с указателем, перемещается, взаимодействуя с неподвижной пластиной. Движение ограничивает пружинка. Электростатические приборы по принципу действия механизма явля­ются вольтметрами. Достоинства этих приборов: широкий частотный диапазон (до 30 МГц) и малая мощность, потребляемая из измерительной цепи. Приборы измеряют среднее квадратическое значение напряжения.

Описанные выше приборы не решают многих проблем, возникающих при измерении разных величин на переменном токе: электромагнитный и электродинамический — низкочастотны, электростатический обладает низкой чувствительностью. Применение магнитоэлектрического механизма в сочетании с преобразователем переменного тока в постоянный позволяет существенно расширить возможности измерений на переменном токе. По типу преобразователя данные приборы делят на выпрямительные и термоэлектрические

Выпрямительные приборы состоят из полупроводникового диодного преобразователя переменного тока в постоянный. Вследствие нелинейности вольтамперной характеристики диода спектр протекающего через него тока содержит составляющие частот, кратные частоте измеряемого напряжения, а также посто­янную составляющую, отражающую информацию о значении измеряемой величины.

Технически удобнее выделить постоянную составляющую выходного тока (или напряжения), если ее значение связано определенной функциональной зависимостью с измеряемым на­пряжением, и которая может служить сигналом измерительной информации. В этом случае основные операции, выполняемые электрической схемой вольтметра: преобразование измеряемого напряжения с помощью нелинейного устройства, выделение постоянной составляющей и ее измерение показывающим измерительным прибором.

Схему преобразователя можно строить разными способами, но в результате через измерительный механизм должен протекать однополярный пульсирующий ток (двухполупериодный или однополупериодный).

В табл. 2 показан простейший двухполупериодный (двух­тактный) диодный выпрямитель. В силу того, что магнитоэлек­трическая измерительная система реагирует на постоянный ток, показания прибора будут пропорциональны средневыпрямленному значению переменного тока или напряжения. Данное обстоя­тельство является очень существенным, так как часто приборы проградуированы в средних квадратических значениях синусои­дального тока. Это значит, что на шкале прибора представлено не то значение, на которое реагирует прибор (т.е. средневыпрямленное), а величина, умноженная на КS = 1,11.

 

Таблица 2

 

 

При измерении параметров переменного негармонического сигнала, практически всегда возникает методическая погреш­ность.

Выпрямительные приборы применяют как комбинированные измерители постоянного и переменного тока и напряжения с пределами измерения тока от 1 мА до 600 А, напряжения — от 0,1 до 600 В.

Достоинствами выпрямительных приборов являются высо­кая чувствительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется применяемы­ми диодами. Так, использование точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений на час­тотах 50... 10 Гц. Выпрямительные приборы выполняют в виде многопредельных и многоцелевых лабораторных измерительных приборов. К этому типу измерительных приборов относится так называемый тестер.

Приборы термоэлектрической системы состоят из термоэлектрического преобразователя (проще, термопреобразователя) и магнитоэлектрического микроамперметра. Термопреобразователь содержит нагреватель с протекающим по нему измеряемым током, и термопару, на концах которой возникает термоЭДС. Для измерения термотока в цепь термопары включен микроамперметр. Рабочий спай термопары находится в тепловом контакте с нагревателем, который представляет собой тонкую проволоку из металлического сплава с высоким удельным сопротивлением (нихром, манганин).

Еще более тонкие проволочки из термоэлектродных материалов применяют для изготовления термопары. При прохождении измеряемого тока через нагреватель, место его контакта с термопарой нагревается до требуемой температуры, а холодный спай остается при температуре окружающей среды. Функционирование прибора основано на тепловом действии тока, и поэтому магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднее квадратическое значение пе­ременного тока любой формы.

Термоэлектрические приборы применяют в основном для измерения токов. В качестве вольтметров практически не исполь­зуют, так как их входное сопротивление чрезвычайно мало. Достоинством термоэлектрических приборов является широкий частотный диапазон (до 10 МГц). Недостатки: невысокая чувст­вительность, низкий класс точности (1,5...4,0).