Приводы выключателей

 

Надежная работа и безопасное обслуживание выключателей высокого напряжения невозможны без надежного привода, обеспечивающего безотказное выполнение операций включения и отключения выключателей и разъединителей вручную и автоматически. Монтаж привода должен быть по возможности простым и не требовать специальных знаний, он не должен требовать и точных работ по установке и регулировке привода.

При выборе типа привода прежде всего необходимо определить, для автоматических или неавтоматических операций он предназначается. Неавтоматические выключатели с более простыми приводами требуются в относительно редких случаях, например для размыкания шлейфов в сетях высокого напряжения. Как правило, выключатели работают автоматически.

Многие конструкции выключателей требуют наличия в их приводах механизма свободного расцепления, который служит двоякой цели: обеспечивает быстрое отключение и при включении на неустранённое КЗ автоматически отключает выключатель, несмотря на то, что орган управления находится в положении «Включено».

В настоящее время существуют следующие типы приводов: ручные — с предварительным запасанием энергии включения и без него; электрические — также с запасанием энергии включения и без него; пневматические — работающие на сжатом воздухе; гидравлические — работающие на масле под давлением.

Электрические приводы подразделяются на электромагнитные (соленоидные) и моторные. В некоторых случаях моторные приводы снабжаются аккумулятором энергии, в этом случае их называют инерционными приводами.

Выключатели с автоматическими приводами допускают дистан­ционное управление, а выключатели с ручным приводом могут управляться дистанционно только после ручного завода пружины на месте установки выключателя.

К различным типам приводов предъявляются следующие требо­вания: а) пневматические и гидравлические приводы должны рабо­тать надежно при отклонениях давления рабочей среды перед управляющим клапаном в пределах от +10 до 0%; б) двигательные приводы прямого действия должны надежно работать при отклонениях напряжения на зажимах двигателя в пределах от +10 до -20%; в) инерционные двигательные приводы должны надежно запасать энергию в накопителе энергии (маховике) при отклонениях напряжения на зажимах двигателя в пределах от +10 до -20%; г) электромагнитные (соленоидные) приводы прямого действия должны надежно работать при отклонениях напряжения на их зажимах в пределах от +10 до -20%.

У всех приводов при недопустимом понижении или даже полном исчезновении давления или напряжения подвижные элементы не должны оставаться в промежуточном положении.

Ручной привод прямого действия допускается устанавливать для выключателей с отключаемой мощностью не более 200 MBА и максимальным включаемым током не более 10 кА.

Ручной привод применяется для выключателей нагрузки, разъединителей и заземляющих разъединителей всех напряжений, для выключателей, однако, только для напряжений до 35 кВ. Для выключателей с номинальным напряжением 35 кВ ручные приводы по большей части служат в качестве аварийного резерва к основному автоматическому приводу.

Приведение в действие ручного привода осуществляется рычагом или маховиком. В ручном маховичном приводе типа ПМ-10 соединение привода с валом выключателя производится при помощи рычага, шарнирно соединенного с пальцем на валу выключателя. Включение таким приводом производится поворотом маховика вручную, отключение — либо вручную, либо автоматически от реле минимального напряжения. Привод имеет механизм свободного расцепления.

Рычажные приводы типа ПРБА и ПРА включают выключатели при повороте рычага, соединенного с валом выключателя, отключение может производиться либо вручную, либо автоматически. В обоих типах приводов имеются механизмы свободного расцепления, позволяющие отключать выключатель в любом его положении как вручную, так и автоматически при помощи встроенных в привод отключающих элементов.

Ручные приводы имеют простую и надежную конструкцию, удобны в эксплуатации, но имеют ограниченное применение. Главным и существенным их недостатком является невозможность включения при их помощи выключателей дистанционно и автоматически.

Электрические приводы подразделяются на электромагнитные (соленоидные) и двигательные.

В электромагнитных приводах применяют электромагниты с перемещением сердечника вверх или вниз, а также с поворотными сердечниками. В СССР нашли широкое применение приводы с движением сердечника вверх. Для приведения в действие электрических приводов требуется достаточно мощный источник постоянного тока (до 50 кВт), например, аккумуляторная батарея, так как электромагниты переменного тока требуют слишком большой реактивной мощности. Электромагниты с линейным перемещением сердечника имеют то преимущество, что в конце хода сердечника тяговая сила электромагнита увеличивается и это способствует более сильному прижатию контактов выключателя друг к другу.

Электромагниты с поворотным сердечником допускают непосред­ственное соединение последнего с валом выключателя.

Для двигательного привода можно использовать как постоянный, так и переменный ток. Потребление мощности двигательными приводами примерно наполовину меньше, чем электромагнитными. Включение производится через червячную передачу, усиливающую момент привода. В двигательных приводах, применяемых для выключателей, часть энергии запасается в маховике, так как в конце процесса включения требуется развивать большие моменты, чем в начале. При исчезновении напряжения в процессе включения не должно возникать нежелательных последствий. Отключение выключателя производится пружиной, которая заводится при включении.

Двигательные приводы прямого действия в настоящее время не выпускаются и не применяются, однако на некоторых старых установках их еще можно встретить.

Инерционные двигательные приводы в СССР также не изготовляются, так как их конструкция сложна, они дороги и в надежности уступают электромагнитным приводам.

Пневматические приводы работают на сжатом воздухе и состоят из преобразователя энергии сжатого воздуха в механическую и из системы рычагов, передающих включающее усилие приемному рычагу выключателя. Их преимуществами по сравнению с электрическими приводами являются: простота конструкции, малые габариты, высокая скорость включения, мягкое (безударное) включение, легкость накопления энергии в простых воздушных резервуарах. Поэтому в последнее время пневматический привод распростра­няется также в электроустановках, в которых нет воздушных выключателей. Для получения сжатого воздуха устанавливают малые компрессоры на 0,5—1,0 МПа и соответствующие резервуары сжатого воздуха.

Приводы воздушных выключателей обычно эксплуатируются на том же давлении, что и давление дутья (1,5—2,0 МПа). В этих выключателях в зависимости от их конструкции сжатый воздух может непосредственно приводить в движение подвижный контакт, без промежуточного преобразования энергии сжатого воздуха в механическую в специальном приводном механизме.

Сжатый воздух может также применяться в приводах других конструкций для предварительного завода включающих или отключающих пружин.

Для современных сверхмощных выключателей 500—750 кВ с отключающей мощностью 20—50 ГВА требуются приводы, способные совершать весьма большую работу и производить операции включения и отключения чрезвычайно быстро: собственное время должно быть сведено практически к нулю. Такими возможностями не обладают пневматические приводы, которые к тому же имеют пониженную надёжность в электрическом отношении из-за возможности конденсации влаги на внутренних поверхностях воздухо­проводов. Эти недостатки отсутствуют у гидравлических приводов, в которых для передачи силовых импульсов к валу выключателя используется жидкость, преимущественно масло, под давлением.

Благодаря практической несжимаемости жидкости эти импульсы передаются мгновенно, и собственное время такого привода бесконечно мало. В СССР пока созданы только опытные образцы пневмо-гидравлических приводов, но, несомненно, они имеют большую перспективу применения. За рубежом пневмогидравлические приводы наиболее распространены во Франции, где они применяются с 1954 г. Французские пневмогидравлические приводы работают при давлениях масла до 30,0 МПа, что оказывается возможным при применении прочноплотных труб из изоляционного материала, армиро­ванного стекловолокном. Вязкость масла в системе остается неизменной до температуры - 50° С. В системе привода установлен гидропневматический аккумулятор, в котором запасается достаточная энергия для нескольких циклов работы привода.

Энергия расходуется только на включение, отключение выклю­чателя производится пружиной. Давление в резервуаре поддерживается автоматически периодической подкачкой насосом мощностью 0,3 кВт. Для повышения надежности параллельно с автоматическим установлен также ручной насос, который используется для ручной подкачки масла при отсутствии электрической энергии.