И ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛА

 

 

С увеличением температуры происходит изменение электрофизических, теплофизических и магнитных свойств материалов и веществ (рис. 2.3 – 2.9) [6, 10, 11].

При изменении температуры наблюдается рост удельного сопротивления металлов. Скачкообразное изменение удельного сопротивления соответствует переходу металла из одного агрегатного состояния в другое (из твердого – в жидкое состояние) (рис. 2.3, 2.4).

 
  Рис. 2.4. Зависимость относительной магнитной проницаемости и удельного сопротивления от температуры для среднеуглеродистой стали  
  Рис. 2.3. Зависимость удельного электрического сопротивления некоторых металлов от температуры  

 

Изменение относительной магнитной проницаемости, показанное на рис. 2.4, характерно только для ферромагнитных металлов. При температуре, соответствующей точке Кюри (ориентировочно ), металл теряет свои магнитные свойства, и относительная магнитная проницаемость становится равной единице.

Изменение энтальпии (теплосодержания) для металлов, показанное на рис. 2.5, имеет такой же характерный переход при изменении агрегатного состояния, что и изменение удельного сопротивления.

 

Изменение коэффициента теплопроводности для некоторых газов и жидкостей (рис. 2.6, 2.7) связано с явлением переноса некоторого количества тепла в различных слоях жидкости или газа. Собственно коэффициент теплопроводности численно равен количеству тепла, переносимого через единицу поверхности за единицу времени при градиенте температуры равном единице. Для различных жидкостей и газов изменение коэффициента теплопроводности (в зависимости от изменения температуры) проявляется по-разному, что связано с явлением переноса внутренней энергии, зависящим от распределения молекул жидкостей и газов по скоростям.
Рис. 2.5. Энтальпия различных металлов

Изменение теплопроводности металлов (рис. 2.8) происходит по закону Видемана – Франца, в соответствии с которым для всех металлов отношение коэффициента теплопроводности к удельной электропроводности прямо пропорционально абсолютной температуре.

Рис. 2.6. Зависимости коэффициентов теплопроводности некоторых газов от температуры:     1 – водяной пар; 2 – кислород; 3 – воздух; 4 – азот; 5 – аргон Рис. 2.7. Зависимости коэффициентов теплопроводности некоторых капельных жидкостей от температуры:   1 – вазелиновое масло; 2 – бензол; 3 – ацетон; 4 – касторовое масло; 5 – этиловый спирт; 6 – метиловый спирт; 7 – глицерин; 8 – вода

 

 

Рис. 2.8. Зависимости Коэффициентов теплопроводности некоторых металлов от температуры Рис. 2.9. Зависимости коэффициентов теплопроводности некоторых теплоизоляционных и огнеупорных материалов от температуры:   1 – воздух; 2 – минеральная шерсть, плотность 160 кг/м3; 3 – шлаковая вата, плотность 200 кг/м3; 4 – ньювель, плотность 340 кг/м3; 5 – совелит, плотность 140 кг/м3; 6 – диатомитовый кирпич, плотность 550 кг/м3; 7 – красный кирпич, плотность 1670 кг/м3; 8 – шлакобетонный кирпич, плотность 1370 кг/м3; 9 – шамотный кирпич, плотность 1840 кг/м3

 

Закон Видемана – Франца является следствием того, что теплопроводность металлов, как и их электропроводность, осуществляется свободными электронами [7].

Изменение теплопроводности огнеупорных и теплоизоляционных материалов, представленных на рис. 2.9, показывает, что для большинства этих изделий с ростом температуры наблюдается увеличение коэффициента теплопроводности. Однако следует отметить, что наряду с приведенными материалами существуют и такие, у которых с ростом температуры коэффициент теплопроводности уменьшается (муллитовые, карборундовые изделия, хромомагнезитовый кирпич).