КОНСТРУКЦИЯ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ

 

При проектировании ультразвуковых колебательных систем для многофункциональных аппаратов необходимо обеспечить увеличение амплитуды колебаний рабочего инструмента не менее чем в 10 раз с помощью концентратора и выполнить требования повышенной компактности. В этом случае, как отмечалось ранее, используются колебательные системы с четвертьволновыми преобразователем и концентратором.

Недостатком таких систем является соединение преобразователя (пьезоэлектрического) с концентратором в плоскости наибольших механических напряжений. Этот недостаток устраняется в колебательной системе, выполненной в виде тела вращения, образованного двумя металлическими накладками, между которыми выше узла смещения ультразвуковой волны расположены пьезоэлектрические элементы

Усиление амплитуды колебаний обеспечивается за счет того, что образующая тела вращения колебательной системы, выполнена в виде непрерывной кривой, например катеноиды, экспоненты и пр., обеспечивающей концентрацию ультразвуковой энергии. При подведении электрического напряжения к электродам пьезоэлементов возникают механические колебания, которые усиливаются за счет выполнения накладок в виде непрерывной кривой, а затем передаются рабочему инструменту. Оптимальным, с точки зрения обеспечения согласования входного сопротивления активного элемента и сопротивления обрабатываемой среды, является выполнение образующих отражающей и излучающей рабочих накладок в форме тела вращения с образующей, выполненной в виде катеноиды. Коэффициент усиления при этом будет максимальным и может достигать значений, равных:

K = 0.9 ' N ( при N > 2),

где: N = D/d, D - максимальный диаметр ( диаметр отражающей накладки), d - минимальный диаметр (диаметр излучающей рабочей накладки на участке соединения с инструментом).

Для ультразвуковых колебательных систем, выполненных в форме тела вращения с экспоненциальной или конической образующей, коэффициент усиления будет еще меньше.

В рассматриваемой колебательной системе пьезоэлектрические элементы расположены, как отмечалось, выше узла смещения. Расстояние между ними и торцом колебательной системы выбирается таким, чтобы в области размещения пьезоэлементов динамические напряжения имели значения, не превышающие 0.3 Fmax, что повышает надежность и стабильность системы в работе. Рассмотрим, можно ли использовать рассмотренную колебательную систему для многофункциональных аппаратов технологического назначения. Так, например, для получения коэффициента усиления K = 10 при диаметре торцевой поверхности излучающей рабочей накладки равном 10 мм, согласно приведенной выше формуле, необходимо использование тыльной накладки диаметром 90 мм. Такое значительное увеличение габаритов колебательной системы не только приводит к возникновению радиальных колебаний, существенно уменьшающих коэффициент усиления [18], но и практически не реализуемо вследствие отсутствия пьезоэлектрических элементов больших диаметров (диаметром более 70 мм)

 

Поэтому приходится выполнять УЗ колебательную систему в виде тела вращения из двух накладок и двух пьезоэлектрических элементов, расположенных между этими накладками, так что образующая тела вращения выполнена в виде непрерывной кусочно-гладкой кривой, состоящей из трех участков [21]. Первый участок - цилиндрический длиной i 1 , второй - экспоненциальный длиной i z, третий - цилиндрический длиной i 2. Пьезоэлектрические элементы расположены между экспоненциальным участком и торцом отражающей накладки. Длины участков отвечают следующим условиям:

 

i 1 = k [ c1/w - 2 h (с1/с + 1)],

 

i z = ln (N),

 

i 2 = k с2/w ,

где с1 , с2 - скорости распространения ультразвуковых колебаний в материалах накладок, (м/с), с - скорость распространения ультразвуковых колебаний в материале пьезоэлемента, [м/с], w /2p - рабочая частота колебательной системы, [Гц], d - толщина пьезоэлемента, [м], k - коэффициент, выбираемый из условия обеспечения требуемого коэффициента усиления при заданном N.

Рассматриваемая УЗ колебательная система схематично показана на рис.3.6. На этом же рисунке показано распределение амплитуд колебаний и механических напряжений F в системе, при условии пренебрежения потерями и излучением энергии. Пучностям смещений приблизительно соответствуют узлы механических напряжений, и наоборот, т.е. распределение смещений и сил имеет вид стоячих волн.

УЗ колебательная система содержит корпус 1, в котором посредством крепежных элементов через опору 2 в узле смещений закреплена ультразвуковая колебательная система, состоящая из отражающей металлической накладки 3, пьезоэлектрических элементов 4, к электродам которых через соединительный кабель подается электрическое возбуждающее напряжение, излучающей металлической накладки 5. К последней присоединен рабочий инструмент 6.

 

Образующая тела вращения, состоящего из накладок и пьезоэлементов колебательной системы, выполнена в виде непрерывной кусочно-гладкой кривой, содержащей три участка. Первый - цилиндрический - включает отражающую накладку 3 и пьезоэлементы 4. Второй (экспоненциальный) и третий (цилиндрический) участки представляют собой рабочую накладку 5. Длины участков выбираются в соответствии с приведенными выше формулами.

 

Рис. 3.6. Ультразвуковая колебательная система

 

Ввиду того, что предложенная ультразвуковая колебательная система с точки зрения распространения колебаний близка к составным металлическим концентраторам, предварительный расчет длин участков основывался на известной методике. При условии равенства коэффициента сужения экспоненциального участка от диаметра D до d, величине N = 3,5...4,5 обеспечивается максимальный коэффициент усиления системы, близкий к коэффициенту усиления ступенчатого концентратора. Поправочный коэффициент k в формулах получен экспериментально. Установлено, что при значениях N < 3.5 коэффициент k слабо, но зависит от N. В случае N > 3.5 (что реализуется на практике), поправочный коэффициент k фактически не изменяется и равен:

k = 1.1 (при N > 3.5).

Разработанная ультразвуковая колебательная система работает следующим образом. При подведении к электродам пьезоэлементов 4 электрического напряжения, в последних возникают механические колебания, которые распространяются в колебательной системе и усиливаются за счет выполнения накладок в форме тела вращения с образующей в виде непрерывной кусочно - гладкой кривой, описанной выше. При этом обеспечивается усиление УЗ колебаний на величину, равную коэффициенту усиления К:

K = N 2

Можно показать, что для получения K = 10 в предложенной системе при диаметре торцевой поверхности рабочей накладки, равной d = 10 мм, диаметр тыльной накладки D будет равен 32 мм, т.е. почти в три раза меньше, чем в рассмотренном выше примере. Подобная колебательная система легко реализуема на практике.

Таким образом предложенная ультразвуковая колебательная система при практически реализуемых размерах отражающей накладки позволяет обеспечивать высокие значения коэффициента усиления при больших поверхностях рабочего инструмента, то есть пригодна для использования в УЗ многофункциональных аппаратах технологического назначения.

Практические расчеты параметров УЗ колебательных систем для многофункциональных аппаратов всех рассматриваемых типов позволили получить технические параметры, приведенные в таблице 3.2.

 

Таблица 3.2. Параметры колебательных систем многофункциональных

аппаратов

 

Длина каждого из участков колебательной системы определяется по приведенным формулам. Изменение диаметра сечения экспоненциального переходного участка определяется уравнением

Dz = D e - b z

где b = ln N /i z - коэффициент сужения экспоненциального участка.

Продольный размер отражающей металлической накладки для каждого случая будет определяться соотношением i 1 - 2h. Длина цилиндрического участка излучающей накладки (концентратор) на практике уменьшается на величину продольного размера рабочего инструмента (в случае выполнения его сменным).

Приведенные практические формулы и рекомендации позволяют легко сконструировать УЗ колебательную систему для любого УЗ технологического аппарата с заданными техническими характеристиками.