Типы изоляторов и их характеристики

 

Изоляторы, используемые на воздушных ЛЭП, называются линейными. Линейные изоляторы предназначены для изоляции и крепления проводов на линиях и в распределительных устройствах подстанций. Изготовляются изоляторы из фарфора, закаленного стекла и полимерных материалов.

Изоляторы предназначены для изоляции находящихся под напряжением проводов ВЛ от конструктивных частей опоры. Изоляторы ВЛ работают в естественных климатических условиях и подвержены как электрическим, так и механическим воздействиям. Основными требованиями, предъявляемыми к изоляторам, являются: высокая электрическая и механическая прочность, экономичность и стойкость к воздействию внешней среды.

Конструктивно изоляторы ВЛ изготавливаются двух основных типов: штыревые и подвесные. Штыревые изоляторы (см. рисунок 5.9,а) применяются для ВЛ напряжением до 20 кВ и представляют собой монолитное тело 1 специальной формы с канавками для укладки провода и посадочным местом для металлического штыря или крюка 2. К штыревым изоляторам провода привязываются мягкой проволокой того же металла, что и сам провод.

Для ВЛ напряжением 35 кВ и выше применяются подвесные изоляторы (см. рисунок 5.9,б). Такой изолятор состоит из изолирующей части 1, шапки из ковкого чугуна 2, стального стержня 3. Шапка и стержень с изолирующей частью соединяются цементной связкой 4.

В верхней части чугунной шапки имеется гнездо, совпадающее по форме с нижней головкой стального стержня. Эти элементы позволяют собирать подвесные изоляторы в гибкие гирлянды. Гирлянды изоляторов удобны при монтаже и эксплуатации в связи с несложной заменой поврежденного изолятора в гирлянде.

 

Рисунок 5.9 – Изоляторы воздушных линий электропередачи

На промежуточных опорах ВЛ гирлянды называются поддерживающими. Эти гирлянды работают в вертикальном положении, поддерживают провод, воспринимая собственный вес, вес провода и гололеда.

На анкерных опорах гирлянды называются натяжными. Такие гирлянды работают практически в горизонтальном положении и воспринимают дополнительно тяжение провода. Натяжные гирлянды работают в более тяжелых условиях, чем поддерживающие. На ответственных участках ВЛ для повышения надежности применяют сдвоенные гирлянды изоляторов.

Количество изоляторов в гирлянде определяется, главным образом, напряжением ВЛ.

Для ВЛ напряжением 500 кВ и выше масса изоляторов достигает 1...2 т, что усложняет их монтаж, эксплуатацию и создает большие дополнительные нагрузки на опоры. Для ВЛ сверхвысоких напряжений разрабатываются синтетические полимерные изоляторы, масса которых на порядок меньше массы изоляторов из стекла или фарфора.

Полимерные изоляторы имеют ряд преимуществ перед стеклянными и фарфоровыми. Масса полимерных изоляторов в 10-20 раз меньше массы гирлянд изоляторов для ВЛ соответствующего класса напряжения. Это позволяет получить существенные преимущества при транспортировке, монтаже и эксплуатации ЛЭП. Полимерные изоляторы обладают большой механической прочностью и не разрушаются при обстреле их дробью и даже пулями. Линейные изоляторы из полимерных материалов практически не пробиваемы при воздействии грозовых и коммутационных перенапряжений. Их применение в качестве изолирующих межфазовых распорок позволяет ограничить пляску проводов.

В настоящее время выпускаются два типа полимерных изоляторов (см. рисунок 5.10 а,б) по действующему ОСТ 34-27-688-84. В качестве несущего компонента изолятора применяется однонаправленный стеклопластиковый стержень 3, состоящий из десятков тысяч тончайших стеклянных волокон, обладающих высокой механической прочностью. Стеклопластиковый стержень защищен от внешних воздействий защитной оболочкой 2, стойкой к ультрафиолетовому излучению и химическим воздействиям. Это необходимо в связи с тем, что связующее вещество стеклопластикового стержня не обладает достаточной стойкостью к атмосферным воздействиям. На концах несущего стержня крепятся металлические оконцеватели 1, которые должны обеспечивать высокую прочность и надежность изолятора. Для этого применяются два способа оконцевания – клиновая и прессуемая заделки. За счет применения оконцевателей с клиновой заделкой длина изолятора может быть несколько сокращена.

 

 



Маркировка изоляторов состоит из букв и цифр. Для штырьевых изоляторов первая буква обозначает тип, вторая –материал изолятора, цифра указывает величину номинального напряжения. Например: ШС-10 – штырьевой, стеклянный на 10 кВ. Для подвесных изоляторов буквы обозначают тип изоля тора (П – подвесной; Л - линейный), материал изолятора (Ф – фарфоровый; С – стеклянный; Г – для загрязненных районов). Цифра показывает разрушающую электромеханическую нагрузку в килоньютонах. После цифры могут быть еще буквы (А, Б, В), показывающие исполнение изолятора. Например: ПФ70 – подвесной, фарфоровый, с разрушающей электромеханической нагрузкой 70 кН. Для полимерных изоляторов буквы обозначают тип (Л – линейный), материал покрытия (К – кремнийорганическое, П – полиолефиновое покрытие). Цифра показывает разрушающую электромеханическую нагрузку в кН; номинальное электрическое напряжение. После цифр буква показывает исполнение изолятора. Например: ЛП-70/110-ВЗ – линейный, с полиолефиновым покрытием, с разрушающей нагрузкой 70 кН, на напряжение 110 кВ.

Основными характеристиками изоляторов являются сухоразрядное, мокроразрядное и импульсное разрядное напряжения. Сухоразрядным называется напряжение промышленной частоты, при котором происходит перекрытие изолятора с сухой и чистой поверхностью. Мокроразрядным называется напряжение промышленной частоты, при котором изолятор перекрывается в условиях дождя. Импульсное разрядное напряжение определяется при воздействии на изолятор стандартной волны перенапряжения.

При эксплуатации линейные изоляторы подвергаются одновременному воздействию электрического напряжения и механической нагрузки. Поэтому испытания подвесных изоляторов производятся при воздействии напряжения (75 % сухоразрядного) и при постепенном повышении механической нагрузки. Механическая нагрузка, при которой находящийся под напряжением изолятор разрушается, называется разрушающей электромеханической нагрузкой. Эта нагрузка указывается в технических характеристиках изоляторов, которые приведены в таблице приложения Д.