Аксиоматический метод в науке.
Аксиоматический метод – метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями.
Основания для применения аксиоматического метода могут быть разными, что обычно приводит к различению аксиом не только по их формулировкам, но и по их методологическим (прагматическим) статусам. Например, аксиома может иметь статус утверждения, или статус предположения, или статус лингвистического соглашения о желаемом употреблении терминов. Иногда это различие в статусах отражается в названиях аксиом (в современных аксиоматиках для эмпирических теорий среди всех аксиом выделяют часто так называемые постулаты значения, выражающие лингвистические соглашения, а древние греки делили геометрические аксиомы на общие понятия и постулаты, полагая, что первые описывают, вторые строят).
Учет статусов аксиом обязателен, так как можно, например, изменить содержание аксиоматической теории, не изменив при этом ни формулировку, ни семантику аксиом, а поменяв лишь их статус, объявив, скажем, одну из них новым постулатом значения.
Аксиоматический метод был впервые продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы, постулата и определения рассматривались уже Аристотелем. В частности, к нему восходит толкование аксиом как необходимых общих начал доказательства. Понимание аксиом как истин самоочевидных сложилось позднее, став основным с появлением школьной логики Пор-Рояля, для авторов которой очевидность означает особую способность души осознавать некоторые истины непосредственно (в чистом созерцании, или интуиции). Убеждение Канта в априорном синтетическом характере геометрии Евклида зависит от этой традиции не считать аксиомы лингвистическими соглашениями или предположениями. Открытие неевклидовой геометрии (Гаусс, Лобачевский, Бойяи); появление в абстрактной алгебре новых числовых систем, причем сразу целых их семейств; появление переменных структур вроде групп; наконец, обсуждение вопросов типа «какая геометрия истинна?» – все это способствовало осознанию двух новых, по сравнению с античным, статусов аксиом:
· аксиом как описаний (классов возможных универсумов рассуждений)
· аксиом как предположений, а не самоочевидных утверждений.
Так сформировались основы современного понимания аксиоматического метода. Это развитие аксиоматического метода становится особенно наглядным при сопоставлении «Начал» Евклида с «Основаниями геометрии» Д.Гильберта – новой аксиоматики геометрии, базирующейся на высших достижениях математики XIX века.
К концу того же века Дж.Пеано дал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний, а П.Бернайс – логики предикатов.
Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода. К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д.
Аксиоматический метод является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории. Как показал известный математик и логик К. Гёдель, достаточно богатые научные теории не допускают полной аксиоматизации. Это свидетельствует об ограниченности аксиоматического метода и невозможности полной формализации научного знания. Поэтому в последние десятилетия по мере развития моделей теории аксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.