Взаимодействие природных и природно-антропогенных геосистемс глобальными факторами

 

Как отмечал Н.А. Солнцев, геолого-геоморфологическая основа играет особую роль в ПТК. Она квазистационарна (почти постоянна) для остальных компонентов. Как твердое тело, она довольно стабильна, и в случае превышения энергетического порога воздействия разрушается катастрофически. Разрушения носят необратимый характер, причем как для разрушения, так и для восстановления требуются максимальные, по сравнению с другими компонентами, энергетические затраты. Биота - живая часть геосистемы. Геома и биота - главные составляющие ПТК, при этом вторая гораздо более мобильна, чем первая. Поэтому, приступая к картографированию геосистем, мы в первую очередь обращаем внимание на геолого-геоморфологическую основу. Но мы были бы неправы, унаследовав на все времена и все случаи жизни лишь результат, а не методы его получения.

Метод, благодаря которому Н.А. Солнцев сделал свои выводы, - это метод попарного сравнения компонентов, исследования на максимум и минимум и противопоставления их прямо противоположных свойств. В чем «сила» геомы? В большой потенциальной энергии связей твердого вещества, в том, что период ее изменения по отношению к длительности человеческой жизни стремится к очень большим числам (для нас как бы к бесконечности). Мы можем сейчас наблюдать на земной поверхности породы, образовавшиеся миллиарды лет назад. Наоборот, многие представители биоты способны дать несколько поколений в день. Период изменений очень мал, но частота (величина, обратная периоду) также может стремиться к большому числу. Да еще их продукцию надо умножить на количество организмов. Таким образом, «сила» биоты заключается в скорости ее изменения, в частоте повторения циклов размножения. Следует проводить эту операцию в каждом конкретном случае, уметь переходить от абсолютных утверждений типа «биота всегда слабее» к относительным, по отношению к определенному периоду, определенным объектам. Геосистема взаимодействует со всеми глобальными факторами. Внешние воздействия на геолого-геоморфологическую основу передаются ею всем другим компонентам ПТК не только непосредственно, сразу (как, например, нагрев поверхности Солнцем), но и большей частью через какое-то время в суммированном виде, значительно преобразованном участием других компонентов (например, изменение морфологической структуры ландшафта под влиянием эрозии). Геолого-геоморфологическая основа наиболее самостоятельна (наиболее независима от глобальных факторов в пределах характерного времени существования большинства конкретных ПТК) и более инерционна (опять-таки, смотря в каком случае).

Похожими чертами обладает почва. Однако это принципиально другое, биокосное тело, обладающее свойствами как неживого, так и живого вещества (биохимический продукт, как тесто для хлеба). Почва есть функция от солнечного тепла на поверхности Земли, при активном участии биоты. Она способна к самовосстановлению (до известного предела), однако менее самостоятельна, разрушается не только механически, но и может потерять биоту («стерильная» почва). Время инерции почвы (реакции на изменение среды), как правило, значительно меньше, чем у геолого-геоморфологической основы в целом. Остальные компоненты еще менее самостоятельны: они все время зависят от состояния циркуляции атмосферы и влагопереноса. Самое малое время инерции у атмосферы.

Под «давлением жизни» (выражение В.И. Вернадского) имеется в виду всеобщая распространенность жизни по поверхности Земли, способность организмов к размножению, к заселению свободных мест, к занятию «экологических ниш», иногда даже как бы вопреки неблагоприятным условиям существования. Именно из-за высокой частоты циклов размножения «давление жизни» может быть очень существенным.

За счет работы механизма обратных связей в цикле биологического (биогеохимического) круговорота природная геосистема и особенно ее «центр», «фокус» (насыщенная биологическими объектами тонкая среда раздела и взаимопроникновения земля – вода - воздух) как бы «сама себя строит», создает свою вертикальную (компонентную) и горизонтальную (морфологическую) структуру. Влияние глобальных факторов на геосистему огромно, но и геосистема, в свою очередь, влияет и на земную поверхность, и на атмосферу, и на банк организмов. И хотя это влияние от каждой отдельной геосистемы в короткий промежуток времени незначительно, оно может суммироваться как в пространстве (если много геосистем оказывают одно и то же воздействие), так и во времени, приобретая значение фактора, определяющего дальнейшую эволюцию ландшафтной оболочки. Именно этот кумулятивный эффект работы относительно «слабых», но «устойчивых» связей, привел к созданию атмосферы и всех геологических осадочных пород. Таким образом, мы должны учитывать сумму, или интеграл по времени и (или) по пространству. Н.А. Солнцев предупреждал о необходимости не путать интегрированное и мгновенное значение. Мгновенное, «сиюминутное» значение, наблюдаемое при однократном экспедиционном посещении объекта, превращается в некоторый отрезок времени при стационарных наблюдениях. Это уже другие методики. От абсолютных значений приходится переходить к работе с приращениями: со скоростями процессов, с ускорениями, т.е. к первой и второй производным от каждой переменной. В этом случае обнаруживается неточность жесткой абсолютизации «силы» и «слабости» компонентов.

В связях отдельных природных геосистем (ПТК) с общим вещественно-энергетическим обменом в масштабе всей Земли управляющим блоком служит земная поверхность, и содержание картографической модели этого блока меняется в зависимости от масштаба карты (глобального, регионального или локального). Реальная иерархия вложенных и объемлющих геосистем более сложная и может быть разная в различных регионах. Она изучается методами систематизации, классификации, районирования. Названные три ранга - наиболее общие, бесспорные. Сейчас можно не стремиться совместить в одной карте все три модели - глобальную, региональную и локальную, так как для этого есть ГИС. В то же время желательно каждую карту снабжать врезками более крупного («ключевые» участки) и более мелкого (схемы районирования) масштабов.

Если мы захотим отразить взаимодействие природно-антропогенной геосистемы (антропогенно измененного ПТК) с глобальными факторами, то нужно добавить аналогично «давлению жизни» еще блок «антропогенного давления». Это банк видов культурных растений и других организмов, в том числе самого человека, энергетическое и вещественное воздействие (перераспределение вещества и энергии). Под «социально-экономическим давлением» также имеются в виду социально-экономические условия, которые заставляют как человечество в целом, так и отдельные государства, группы людей взаимодействовать с природой определенным образом.

Например, нельзя перестать обрабатывать землю вообще, но можно это делать иначе, в зависимости от научно-технических достижений и материальных средств; можно ослабить нагрузку на конкретных участках и на определенное время, хотя возможность такого локального маневра все уменьшается. Часто (но далеко не всегда) «давление жизни» оказывает действие, противоположное действию «социально-экономического давления»; таким образом оно как бы «залечивает раны», нанесенные антропогенным воздействием географической оболочке. Если понимать ноосферу по В.И. Вернадскому как разумное сосуществование и управление природой в условиях социальной справедливости, то этого на Земле еще нет. Но можно понимать ноосферу как социально-экономическое давление.

Антропогенный прессинг - это и есть пример взрывного по геологическим меркам развития «слабого» компонента - биоты, меняющего все остальные компоненты, когда к достаточно высокой частоте циклов размножения добавилось новое качество - повышенная способность к передаче опыта. В результате этого популяция научилась «уплотняться». Во время узкоспециализированной охоты на мамонта, чтобы прокормить одного человека, требовалась территория около 100 км2, при подсечно-огневом земледелии - около 10 га, теперь, по разным подсчетам, - 0,35 - 0,40 га.

Природно-антропогенный комплекс понимают в основном как ПТК, у которого изменен хотя бы один компонент. Классификация таких ПАТК впервые разработана Ф.Н. Мильковым. За ее основу взят традиционный для географии, казалось бы, самый простой признак: степень измененности в баллах (слабая, средняя, сильная; градаций может быть и больше), и характер воздействия разных отраслей человеческой деятельности (промышленной, лесохозяйственной, сельскохозяйственной, рекреационной и т.д.).

Еще выделяют обратимые и необратимые изменения, т.е. может геосистема при снятии нагрузки вернуться к прежнему своему состоянию или ее развитие пошло по другому пути. Это уже системные, кибернетические понятия. Такие категории опять-таки не абсолютны. Например, обратимо или необратимо изменены территории городов, если они зачастую сохраняют даже все водосборы? Обратимо или необратимо изменена географическая оболочка, если человек вынужден изымать ресурсы и поддерживать режимы геотехнических систем?

Возможно, более конструктивными были бы классификации по вещественно-энергетическому принципу, т.е. по материало- и энергоемкости воздействия. Однако мешают, по-видимому, не только трудность определения геомасс, неточность и трудоемкость балансовых методов, но и все еще слабая освоенность системных, информационных подходов. Здесь ключевым является осознание механизма цикла, включающего понятия «системный регулятор» и «обратная связь».

География как комплексная, синтетическая наука вынуждена много заимствовать из смежных дисциплин. Рационально было бы из естественных наук заимствовать методы, а из гуманитарных оформление, например драматургию, красоту описаний. К сожалению, нередко бывает наоборот: из естественных берется внешняя оболочка (формулы, сложные новые термины), а их объяснение не из первоисточника, а из гуманитарных, художественных трактовок. Такой путь может привести к созданию псевдонауки, либо потребует долгих усилий по освоению термина. Классический пример — понятие обратной связи, которую подавляющее большинство географов воспринимали лишь как ответную реакцию, что было даже закреплено в справочнике. Недоразумение остается и до сих пор, поэтому требует тщательного разбора, как ключевое.

Обратная связь — не просто однократный акт ответной реакции. Главное, что благодаря этой связи реализуется алгоритм цикла, т.е. программа, по которой действие может неограниченно повторяться. Вся изюминка в том, что с помощью этой связи замыкается причинно-следственная цепочка: результат первого прохождения цикла (следствие) влияет на свою же причину в следующем обороте цикла. Результат, полученный в следующем витке, опять подмешивается в начальные условия и т.д.

На плоском листе бумаги обычно рисуют один оборот цикла, потому-то процесс как бы приходит «обратно», в исходную точку. Однако следует рисовать не круг, а объемную спираль, растянутую во времени. На самом деле эта связь никакая не обратная, поскольку время необратимо. С этой точки зрения, ни один цикл, круговорот не может быть замкнутым, не только потому, что всегда есть вещественно-энергетические потери уже в одном обороте, но и потому, что «никогда нельзя войти в одну и ту же воду». Хотя в технических системах мы можем видеть возврат в исходное состояние, если не учитывать износ.

Осознание роли обратной связи началось с внедрением кибернетики. Вся компьютерная индустрия фактически основана на операторе цикла. Циклично работают многие системы неживой природы, а уж органическая жизнь тем более: мы ходим, дышим автоматически. Сама способность к размножению половым ли способом, как у высших животных, либо спорами или вегетативным «почкованием» обусловлена автоматическим алгоритмом.

В методической литературе распространено неверное представление об обратной связи между преподавателем и учеником: вопрос преподавателя - это связь прямая, а ответ - обратная, так как направлена в другую сторону (обратная, значит, ответная). На самом деле и то, и другое - это связь прямая: одно действие порождает другое. Обратной связь можно назвать только в том случае, если она замыкает цикл, если с ее помощью организуется повторение нескольких циклов. Например, услышав ответ ученика, преподаватель корректирует свой следующий вопрос, т.е. следствие из первого цикла служит причиной для второго.

Алгоритм работы обратной связи в цикле был подробно описан в литературе, в том числе и на большом количестве географических примеров.

Изучая структуры геосистем в пространстве, мы еще нечетко осознаем структуры во времени (время разнообразных циклических, производственных процессов, время инерции восстановления и т.д.). Не так давно было введено понятие характерного времени. Его можно определить как среднее время существования (индивидуума, вида, процесса, явления) или как время одного оборота цикла. Для человека характерное время - около ста лет, для однолетней травы - год и меньше, для грозового разряда - секунды, для циклонического вихря - дни, для восстановительной сукцессии в тайге - около сотни лет.

Пока шли споры о том, непрерывна или дискретна природа, оказалось, что континуальность и дискретность - лишь частные случаи фрактальности. Фрактальные структуры (система кровеносных сосудов человека, эрозионные и речные системы, иерархическая система природных комплексов) есть «запись» былых циклических процессов. Структура пространственная - это отражение прошедшей «временной структуры». Хотя время, по-видимому, всегда течет равномерно, но мы измеряем его процессами разной периодичности.

Для своего существования человечество вынуждено поддерживать временные режимы нужной формы функционирования природно-антропогенных комплексов. Одно дело - однократные, эпизодические вмешательства, другое - сельское хозяйство, со строго упорядоченной очередностью воздействий, и третье - постоянное поддержание инженерных сетей, зданий, твердого покрытия в городах (которое, кстати, прерывает биологический круговорот в бывших наиболее «плодородных» ПТК). Мы не всегда задумываемся над тем, что затраты надо умножать на время, на количество циклов.

Каждая отдельная геосистема, природная или в той или иной степени антропогенно измененная, связана с глобальной системой географической оболочки посредством множества циклов (в том числе иерархически вложенных один внутри другого) и находится в поле «социально-экономического давления», осуществляемого также посредством циклов и посредством вещественно-энергетического воздействия на системные регуляторы. Освоение кибернетических законов идет трудно, но только оно позволит нам работать более осознанно. По мере осознания потребуется и выработка новых методов.