Логика и методология науки. Методы научного познания и их классификация.

Логика науки – наука, применяющая понятия и технический аппарат современной логики к анализу систем научного знания. Сформировалась в 1-й четверти XX в. Разрабатывалась представителями неопозитивизма. В 60-х гг. получила творческое развитие в рамках современной философии. Термин “логика науки” употребляется также для обозначения законов развития науки (логика научного развития), правил и процедур научного исследования (логика исследования), учения о психологических и методологических предпосылках научных открытий (логика научных открытий).

Логика науки – совокупность правил логической организации научного знания, применяемой в той или иной научной теории (множество правил вывода и определения). Среди важнейших логических методов построения научных теорий выступают дедукция и конструктивно – генетический метод. Наряду со средствами формальной логики при создании научных теорий о развивающихся системах и объектах применяют методы диалектической логики (метод восхождения от абстрактного к конкретному, исторический метод и др.). Сознательная фиксация логических средств разворачивания содержания научных теорий особое значение имеет в математике, поскольку здесь первостепенную роль играют непротиворечивость и доказательность теоретических структур знаний.

Методология науки – учение о методах, средствах и процедурах научной деятельности, раздел общей методологии познания, а также часть теории научного познания. Любая методология науки исходит из определенной классификации методов научного познания. Как правило, используются классификации по двум основаниям: степени общности метода (общенаучные и частно – научные методы) и характеру получаемого знания (эмпирические, теоретические и метатеоретические методы). К числу общенаучных методов относятся научное наблюдение, эксперимент, научное описание, обобщение, классификация, объяснение, предсказание, понимание, идеализация, теоретическое (мысленное) конструирование, доказательство, интерпретация и др. Частно – научные методы делятся в свою очередь по двум основаниям: принадлежности к тому или иному классу наук (логико – математические, естественно – научные, социально – гуманитарные, технико – технологические) и принадлежности к той или иной конкретной науке среди указанных классов (логические методы, физические методы, исторические методы, методы инженерного проектирования и т.д.). Классификация методов науки по характеру получаемого продукта (знания) делит их на три основных класса: 1) методы эмпирического познания (наблюдение, эксперимент, описание, абстрагирование, индукция, материальное моделирование, экстраполяция и др.); 2) методы теоретического познания (идеализация, мысленный эксперимент, математическое моделирование, логическая организация знания, доказательство, интерпретация и др.); 3) методы метатеоретического познания (анализ оснований научных теорий, философская интерпретация содержания и методов науки, оценка социальной и практической значимости содержания научных теорий и др.). Одним из общих различений научных методов является отнесение одних к контексту научного открытия (наблюдение, эксперимент, обобщение, интуиция и др.), а других – к контексту научного обоснования (доказательство, подтверждение, фальсификация, уточнение, определение области применимости и др.).

Методы научного познания и их классификация.

Метод это совокупность действий, призванных помочь достижению желаемого результата. Современная наука основывается на определенной методологии – то есть совокупности используемых методов и учений о методе. Система методов научного исследования включает в себя, во-первых, методы применяемые не только в науке, но и в других отраслях знания, во-вторых, методы применяемые во всех отраслях науки и. В-третьих, методы специфические для отдельных определенных разделов науки, отдельных научных дисциплин.

Анализ – расчленение целостного предмета на составляющие части (стороны, признаки, свойства или отношения) с целью их всестороннего изучения. Данный метод является наиболее популярным для курсовых и дипломных работ. Так может использоваться: сравнительно-правовой анализ (например, сравниваются правовые системы России и Франции), статистический анализ (динамика рассматриваемого явления за определенный период) и т.д.

Аналогия – прием познания при котором на основе сходства объектов по одним признакам делается заключение об их сходстве по другим.

Дедукция – вид умозаключения от общего к частному, когда из массы частных случаев делается обобщенный вывод о всей совокупности таких случаев.

Индукция – метод исследования и способ рассуждения, в котором общий вывод строится на основе частных посылок.

Классификация – разделение всех изучаемых предметов на отдельные группы в соответствии с каким-либо важным для исследователя признаком (особое значение имеет в описательных науках: геологии, географии, некоторых разделах биологии).

Моделирование – изучение объекта (оригинала) путем создания и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих познание. Модель всегда соответствует объекту-оригиналу в тех свойствах, которые подлежат изучению, но в то же время отличаются от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта.

Наблюдение – целенаправленное восприятие явлений объективной действительности, в ходе которого получают знания о внешних сторонах, свойствах и отношениях изучаемых объектов.

Обобщение – прием мышления, в результате которого устанавливаются общий свойства и признаки объектов.

Описание – фиксация средствами естественного или искусственного языка сведений об объектах.

Прогнозирование – специальное научное исследование конкретных перспектив развития какого-либо явления.

Синтез – соединение ранее выделенных частей (сторон, признаков, свойств или отношений) предмета в единое целое.

Эксперимент – апробирование, испытание изучаемых явлений в контролируемых и управляемых условиях. В эксперименте стремятся выделить изучаемое явление в чистом виде, с тем чтобы было как можно меньше препятствий в получении искомой информации.

Понятие метод (от греческого слова «методос» — путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности. Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике. Таким образом, метод (в той или иной своей форме) сводится к совокупности определенных правил, приемов, способов, норм познания и действия. Он есть система предписаний, принципов, требований, которые ориентируют субъекта в решении конкретной задачи, достижении определенного результата в данной сфере деятельности. Он дисциплинирует поиск истины, позволяет (если правильный) экономить силы и время, двигаться к цели кратчайшим путем. Основная функция метода — регулирование познавательной и иных форм деятельности.Учение о методе начало развиваться еще в науке Нового времени. Ее представители считали правильный метод ориентиром в движении к надежному, истинному знанию. Так, видный философ XVII в. Ф. Бэкон сравнивал метод познания с фонарем, освещающим дорогу путнику, идущему в темноте. А другой известный ученый и философ этого же периода Р. Декарт изложил свое понимание метода следующим образом: “Под методом, — писал он, — я разумею точные и простые правила, строгое соблюдение которых... без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно”.Существует целая область знания, которая специально занимается изучением методов и которую принято именовать методологией. Методология дословно означает «учение о методах» (ибо происходит этот термин от двух греческих слов: «методос» — метод и «логос» — учение). Изучая закономерности человеческой познавательной деятельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.Методы научного познания принято подразделять по степени их общности, т. е. по широте применимости в процессе научного исследования. Всеобщих методов в истории познания известно два: диалетический и метафизический. Это общефилософские методы. Метафизический метод с середины XIX века начал все больше и больше вытесняться из естествознания диалектическим методом.Вторую группу методов познания составляют общенаучные методы, которые используются в самых различных областях науки, т. е. имеют весьма широкий, междисциплинарный спектр применения.Классификация общенаучных методов тесно связана с понятием уровней научного познания. Различают два уровня научного познания: эмпирический и теоретический. Это различие имеет своим основанием неодинаковость, во-первых, способов (методов) самой познавательной активности, а во-вторых, характера достигаемых научных результатов. Одни общенаучные методы применяются только на эмпирическом уровне (наблюдение, эксперимент, измерение), другие — только на теоретическом (идеализация, формализация), а некоторые (например, моделирование) — как на эмпирическом, так и на теоретическом уровнях.Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. Особая роль эмпирии в науке заключается в том, что только на этом уровне исследования мы имеем дело с непосредственным взаимодействием человека с изучаемыми природными или социальными объектами. Здесь преобладает живое созерцание (чувственное познание), рациональный момент и его формы (суждения, понятия и др.) здесь присутствуют, но имеют подчиненное значение. Поэтому исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений, доступных живому созерцанию и выражающих внутренние отношения. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений, выполнения разнообразных измерений, поставки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т. п. Кроме того, уже на втором уровне научного познания- как следствие обобщения научных фактов - возможно формулирование некоторых эмпирических закономерностей.Теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, теорий, законов и других форм и “мыслительных операций”. Отсутствие непосредственного практического взаимодействия с объектами обуславливает ту особенность, что объект на данном уровне научного познания может изучаться только опосредованно, в мысленном эксперименте, но не в реальном. Однако живое созерцание здесь не устраняется, а становится подчиненным (но очень важным) аспектом познавательного процесса. На данном уровне происходит раскрытие наиболее глубоких существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям путем обработки данных эмпирического знания. Эта обработка осуществляется с помощью систем абстракций «высшего порядка» — таких как понятия, умозаключения, законы, категории, принципы и др. Однако «на теоретическом уровне мы не найдем фиксации или сокращенной сводки эмпирических данных; теоретическое мышление нельзя свести к суммированию эмпирически данного материала. Получается, что теория вырастает не из эмпирии, но как бы рядом с ней, а точнее, над ней и в связи с ней».Теоретический уровень - более высокая ступень в научном познании. «Теоретический уровень познания направлен на формирование теоретических законов, которые отвечают требованиям всеобщности и необходимости, т.е. действуют везде и всегда». Результатами теоретического познания становятся гипотезы, теории, законы. Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического. Гипотезы и теории формируются в процессе теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно - наглядные образы (в том числе схемы, графики и т. п.), с которыми имеет дело эмпирический уровень исследования.В свою очередь, эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обуславливает и обосновывает применяемые при этом методы.Согласно К. Попперу, является абсурдной вера в то, что мы можем начать научное исследование с «чистых наблюдений», не имея «чего-то похожего на теорию». Поэтому некоторая концептуальная точка зрения совершенно необходима. Наивные же попытки обойтись без нее могут, по его мнению, только привести к самообману и к некритическому использованию какой-то неосознанной точки зрения.Эмпирический и теоретический уровни познания взаимосвязаны, граница между ними условна и подвижна. Эмпирическое исследование, выявляя с помощью наблюдений и экспериментов новые данные, стимулирует теоретическое познание (которое их обобщает и объясняет), ставит перед ним новые более сложные задачи. С другой стороны, теоретическое познание, развивая и конкретизируя на базе эмпирии новое собственное содержание, открывает новые, более широкие горизонты для эмпирического познания, ориентирует и направляет его в поисках новых фактов, способствует совершенствованию его методов и средств и т. п.К третьей группе методов научного познания относятся методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления. Такие методы именуются частнонаучными. Каждая частная наука (биология, химия, геология и т. д.) имеет свои специфические методы исследования. При этом частнонаучные методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания. В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т. д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связаны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира. Вместе с тем частнонаучные методы связаны и со всеобщим, диалектическим методом, который как бы преломляется через них.Еще одну группу методов научного познания составляют так называемые дисциплинарные методы, которые представляют собой системы приемов, применяемых в той или иной дисциплине, входящей в какую-нибудь отрасль науки или возникшей на стыке наук. Каждая фундаментальная наука представляет собой комплекс дисциплин, которые имеют свой специфический предмет и свои своеобразные методы исследования.К последней, пятой группе относятся методы междисциплинарного исследования являющиеся совокупностью ряда синтетических, интегративных способов (возникших как результат сочетания элементов различных уровней методологии), нацеленных главным образом па стыки научных дисциплин.Таким образом, в научном познании функционирует сложная, динамичная, целостная, субординированная система многообразных методов разных уровней, сфер действий, направленности и т. п., которые всегда реализуются с учетом конкретных условий.

 

Историческая изменчивость механизмов порождения научного знания. Взаимодействие оснований и опыта как начальный этап становления новой дисциплины. Проблема классификации. Обратное воздействие эмпирических фактов на основания науки.

 

При выяснении природы научного познания можно выделить систему отличительных признаков науки, среди которых главными являются: а) установка на исследование законов преобразования объектов и реализующая эту установку предметность и объективность научного знания; б) выход науки за рамки предметных структур производства и обыденного опыта и изучение ею объектов относительно независимо от сегодняшних возможностей их производственного освоения (научные знания всегда относятся к широкому классу практических ситуаций настоящего и будущего, который никогда заранее не задан). Все остальные необходимые признаки, отличающие науку от других форм познавательной деятельности, могут быть представлены как зависящие от указанных главных характеристик и обусловленные ими.

В истории формирования и развития науки можно выделить две стадии, которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности. Первая стадия характеризует зарождающуюся науку (преднауку), вторая - науку в собственном смысле слова. Зарождающаяся наука изучает преимущественно те вещи и способы их изменения, с которыми человек многократно сталкивался в производстве и обыденном опыте. Он стремился построить модели таких изменений с тем, чтобы предвидеть результаты практического действия. Первой и необходимой предпосылкой для этого было изучение вещей, их свойств и отношений, выделенных самой практикой. Эти вещи, свойства и отношения фиксировались в познании в форме идеальных объектов, которыми мышление начинало оперировать как специфическими предметами, замещающими объекты реального мира. Эта деятельность мышления формировалась на основе практики и представляла собой идеализированную схему практических преобразований материальных предметов. Соединяя идеальные объекты с соответствующими операциями их преобразования, ранняя наука строила таким путем схему тех изменений предметов, которые могли быть осуществлены в производстве данной исторической эпохи.

Способ построения знаний путем абстрагирования и схематизации предметных отношений наличной практики обеспечивал предсказание ее результатов в границах уже сложившихся способов практического освоения мира. Однако по мере развития познания и практики наряду с отмеченным способом в науке формируется новый способ построения знаний. Он знаменует переход к собственно научному исследованию предметных связей мира.

Если на этапе преднауки как первичные идеальные объекты, так и их отношения выводились непосредственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делает следующий шаг. Оно начинает строить фундамент новой системы знания как бы "сверху" по отношению к реальной практике и лишь после этого, путем ряда опосредований, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики.

При таком методе исходные идеальные объекты черпаются уже не из практики, а заимствуются из ранее сложившихся систем знания (языка) и применяются в качестве строительного материала при формировании новых знаний. Эти объекты погружаются в особую "сеть отношений", структуру, которая заимствуется из другой области знания, где она предварительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой "сеткой отношений" способно породить новую систему знаний, в рамках которой могут найти отображение существенные черты ранее не изученных сторон действительности. Прямое или косвенное обоснование данной системы практикой превращает ее в достоверное знание.

Это метод выдвижения гипотетических моделей с их последующим обоснованием опытом.

Благодаря новому методу построения знаний наука получает возможность изучить не только те предметные связи, которые могут встретиться в сложившихся стереотипах практики, но и проанализировать изменения объектов, которые в принципе могла бы освоить развивающаяся цивилизация. С этого момента кончается этап преднауки и начинается наука в собственном смысле. В ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания - теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Меняется и категориальный статус знаний - они могут соотноситься уже не только с осуществленным опытом, но и с качественно иной практикой будущего, а поэтому строятся в категориях возможного и необходимого. Знания уже не формулируются только как предписания для наличной практики, они выступают как знания об объектах реальности "самой по себе", и на их основе вырабатывается рецептура будущего практического изменения объектов.

Поскольку научное познание начинает ориентироваться на поиск предметных структур, которые не могут быть выявлены в обыденной практике и производственной деятельности, оно уже не может развиваться, опираясь только на эти формы практики. Возникает потребность в особой форме практики, которая обслуживает развивающееся естествознание. Такой формой практики становится научный эксперимент.

Поскольку демаркация между преднаукой и наукой связана с новым способом порождения знаний, проблема генезиса науки предстает как проблема предпосылок собственно научного способа исследования. Эти предпосылки складываются в культуре в виде определенных установок мышления, позволяющих возникнуть научному методу. Их формирование является результатом длительного развития цивилизации.

Культуры традиционных обществ (Древнего Китая, Индии, Древнего Египта и Вавилона) не создавали таких предпосылок. Хотя в них возникло множество конкретных видов научного знания и рецептур решения задач, все эти знания и рецептуры не выходили за рамки преднауки.

Переход к науке в собственном смысле слова был связан с двумя переломными состояниями развития культуры и цивилизации. Во-первых, с изменениями в культуре античного мира, которые обеспечили применение научного метода в математике и вывели ее на уровень теоретического исследования, во-вторых, с изменениями в европейской культуре, произошедшими в эпоху Возрождения и перехода к Новому времени, когда собственно научный способ мышления стал достоянием естествознания (главным процессом здесь принято считать становление эксперимента как метода изучения природы, соединение математического метода с экспериментом и формирование теоретического естествознания).

Для перехода к собственно научной стадии необходим был особый способ мышления (видения мира), который допускал бы взгляд на существующие ситуации бытия, включая ситуации социального общения и деятельности, как на одно из возможных проявлений сущности (законов) мира, которая способна реализоваться в различных формах, в том числе весьма отличных от уже осуществившихся.

Такой способ мышления не мог утвердиться, например, в культуре кастовых и деспотических обществ Востока эпохи первых городских цивилизаций (где начиналась преднаука). Доминирование в культурах этих обществ канонизированных стилей мышления и традиций, ориентированных прежде всего на воспроизведение существующих форм и способов деятельности, накладывало серьезные ограничения на прогностические возможности познания, мешая ему выйти за рамки сложившихся стереотипов социального опыта. Полученные здесь знания о закономерных связях мира, как правило, сращивались с представлениями об их прошлой (традиция) либо сегодняшней, наличной практической реализации. Зачатки научных знаний вырабатывались и излагались в восточных культурах главным образом как предписания для практики и не обрели еще статуса знаний о естественных процессах, развертывающихся в соответствии с объективными законами.

Для того чтобы осуществился переход к собственно научному способу порождения знаний, с его упором на изучение необычных, с точки зрения обыденного опыта, предметных связей, необходим был иной тип цивилизации с иным типом культуры. Такого рода цивилизацией, создавшей предпосылки для первого шага по пути к собственно науке, была демократия античной Греции. Именно здесь происходит мутация традиционных культур и здесь социальная жизнь наполняется динамизмом, которого не знали земледельческие цивилизации Востока с их застойно-патриархальным круговоротом жизни. Хозяйственная и политическая жизнь античного полиса была пронизана духом состязательности, все конкурировали между собой, проявляя активность и инициативу, что неизбежно стимулировало инновации в различных сферах деятельности.

Постоянный выход науки за рамки предметных структур, осваиваемых в исторически сложившихся формах производства и обыденного опыта, ставит проблему категориальных оснований научного поиска.

Любое познание мира, в том числе и научное, в каждую историческую эпоху осуществляется в соответствии с определенной "сеткой" категорий, которые фиксируют определенный способ членения мира и синтеза его объектов.

В процессе своего исторического развития наука изучала различные типы системных объектов: от составных предметов до сложных саморазвивающихся систем, осваиваемых на современном этапе цивилизационного развития.

Каждый тип системной организации объектов требовал категориальной сетки, в соответствии с которой затем происходит развитие конкретно-научных понятий, характеризующих детали строения и поведения данных объектов. Например, при освоении малых систем можно считать, что части аддитивно складываются в целое, причинность понимать в лапласовском смысле и отождествлять с необходимостью, вещь и процесс рассматривать как внеположенные характеристики реальности, представляя вещь как относительно неизменное тело, а процесс - как движение тел. Но как только наука переходит к освоению больших систем, в ткань научного мышления должна войти новая категориальная канва. Представления о соотношении категорий части и целого должны включить идею о несводимости целого к сумме частей. Важную роль начинает играть категория случайности, трактуемая не как нечто внешнее по отношению к необходимости, а как форма ее проявления и дополнения.

Предсказание поведения больших систем требует также использования категорий потенциально возможного и действительного. Новым содержанием наполняются категории "качество", "вещь". Если, например, в период господства представлений об объектах природы как простых механических системах вещь представлялась в виде неизменного тела, то теперь выясняется недостаточность такой трактовки, требуется рассматривать вещь как своеобразный процесс, воспроизводящий определенные устойчивые состояния и в то же время изменчивый в ряде своих характеристик (большая система может быть понята только как динамический процесс, когда в массе случайных взаимодействий ее элементов воспроизводятся некоторые свойства, характеризующие целостность системы).

Если в культуре не сложилась категориальная система, соответствующая новому типу объектов, то последние будут восприниматься через неадекватную сетку категорий, что не позволит науке раскрыть их существенные характеристики. Адекватная объекту категориальная структура должна быть выработана заранее, как предпосылка и условие познания и понимания новых типов объектов.

Что касается воздействия эмпирических фактов на основания науки, то для установления факта нужны теории, а они, как известно, должны проверяться фактами. Эта проблема решается только в том случае, если взаимодействие теории и факта рассматривается исторически. Безусловно, при установлении эмпирического факта использовались многие полученные ранее теоретические законы и положения. Иначе говоря, в формировании факта участвуют теоретические знания, которые были ранее проверены независимо. Что же касается новых фактов, то они могут служить основой для развития новых теоретических идей и представлений. В свою очередь новые теории, превратившиеся в достоверное знание, могут использоваться в процедурах интерпретации при эмпирическом исследовании других областей действительности и формировании новых фактов.

Таким образом, при исследовании структуры эмпирического познания выясняется, что не существует чистой научной эмпирии, не содержащей в себе примесей теоретического. Но это является не препятствием для формирования объективно истинного эмпирического знания, а условием такого формирования.

28. Формирование первичных теоретических моделей и законов. Роль аналогий в теоретическом поиске. Процедуры обоснования теоретических знаний. Взаимосвязь логики открытия и логики обоснования. Механизмы развития научных понятий.

 

Рассмотрим вначале, как устроены теоретические модели. В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определенных связях и отношениях друг с другом. Например, изучаются механические колебания тел, то вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчета. А это - второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабженной часами и линейками. Наконец, для описания колебаний необходим еще один абстрактный объект - квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая ее к положению равновесия. Система перечисленных абстрактных объектов (материальная точка, система отсчета, квазиупругая сила) образуют модель малых колебаний (называемую в физике осциллятором). Закон – это существенная, повторяющиеся, устойчивая связь между различного рода материальными и идеальными объектами (состояниями объекта). Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях. Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в ее состав. Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, Степин ввел понятие теоретическая схема. Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи. Введением такого понятия Степин хочет подчеркнуть соотнесение теоретической схемы вполне конкретным теоретическим объектам. Так частные научные теории описывают разные теоретические объекты и более того эти объекты отличаются от объектов более общих теорий. Например, в ньютоновской механике ее основные законы формулируются относительно системы абстрактных объектов: "материальная точка", "сила", "инерциальная пространственно-временная система отсчета". Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчета с течением времени и как изменение состояния движения материальной точки под действием силы. Но также в механике существуют теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил и т.п.

Теперь рассмотрим процесс формирования теоретических схем. В развитой науке теоретические схемы вначале строятся как гипотетические модели (т.е. происходит формирование теоретической модели как гипотезы). Такое построение осуществляется за счет использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели. Только на ранних стадиях научного исследования, когда осуществляется переход от преимущественно эмпирического изучения объектов к их теоретическому освоению, конструкты теоретических моделей создаются путем непосредственной схематизации опыта. Метод схематизации используется главным образом в тех ситуациях, когда наука сталкивается с объектами, для теоретического освоения которых еще не выработано достаточных средств. Тогда объекты начинают изучаться экспериментальным путем, и на этой основе постепенно формируются необходимые идеализации как средства для построения первых теоретических моделей в новой области исследования. Примером таких ситуаций могут служить ранние стадии становления теории электричества, когда физика формировала исходные понятия — “проводник”, “изолятор”, “электрический заряд” и т. д. — и тем самым создавала условия для построения первых теоретических схем, объясняющих электрические явления. Большинство теоретических схем науки конструируются за счет трансляции уже созданных абстрактных объектов, которые заимствуются из ранее сложившихся областей знания и соединяются с новой "сеткой связей". В этой связи возникает вопрос об исходных предпосылках, которые ориентируют исследователя в выборе и синтезе основных компонентов создаваемой гипотезы. Хотя такой выбор и представляет собой творческий акт, он имеет определенные основания. Такие основания создает принятая исследователем картина мира. Вводимые в ней представления о структуре природных взаимодействий позволяют обнаружить общие черты у различных предметных областей, изучаемых наукой. Тем самым картина мира "подсказывает", откуда можно заимствовать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий. (Когда Нагаока предложил свою модель, то он исходил из того, что аналогом строения атома может служить вращение спутников и колец вокруг Сатурна: электроны должны вращаться вокруг положительно заряженного ядра, наподобие того как в небесной механике спутники вращаются вокруг центрального тела. Использование аналоговой модели было способом переноса из небесной механики структуры, которая была соединена с новыми элементами (зарядами). Подстановка зарядов на место тяготеющих масс в аналоговую модель привела к построению планетарной модели атома.). После того как сформирована гипотетическая модель исследуемых взаимодействий, начинается стадия ее обоснования. Она не сводится только к проверке тех эмпирических следствий, которые можно получить из закона, сформулированного относительно гипотетической модели. Сама модель должна получить обоснование. Важно обратить внимание на следующее обстоятельство. Когда при формировании гипотетической модели абстрактные объекты погружаются в новые отношения, то это, как правило, приводит к наделению их новыми признаками. Например, при построении планетарной модели атома положительный заряд был определен как атомное ядро, а электроны были наделены признаком "стабильно двигаться по орбитам вокруг ядра". Предположив, что созданная таким путем гипотетическая модель выражает существенные черты новой предметной области, исследователь тем самым допускает: во-первых, что новые, гипотетические признаки абстрактных объектов имеют основание именно в той области эмпирически фиксируемых явлений, на объяснение которых модель претендует, и, во-вторых, что эти новые признаки совместимы с другими определяющими признаками абстрактных объектов, которые были обоснованы предшествующим развитием познания и практики. Понятно, что правомерность таких допущений следует доказывать специально. Это доказательство производится путем введения 1) абстрактных объектов в качестве идеализаций, опирающихся на новый опыт. Признаки абстрактных объектов, гипотетически введенные "сверху" по отношению к экспериментам новой области взаимодействий, теперь восстанавливаются "снизу". Их получают в рамках мысленных экспериментов, соответствующих типовым особенностям тех реальных экспериментальных ситуаций, которые призвана объяснить теоретическая модель. После этого проверяют, согласуются ли новые свойства абстрактных объектов с теми, которые оправданы предшествующим опытом. Для того, чтобы более конкретно рассмотреть этот вопрос вернемся к планетарной модели атома Нагаока, в которой, вопрос о конструктивности представлений об атомном ядре оставался открытым. Это конструктивное обоснование абстрактный объект – атомное ядро получил в опытах Розерфорда по рассеянию а-частиц. Обнаружив в эксперименте именно рассеяния на большие углы, Резерфорд истолковал его как свидетельство существования внутри атома положительно заряженного ядра. Ядро было определено как центр потенциальных отталкивающих сил, способный рассеивать тяжелые, положительно заряженные частицы на большие углы. Характерно, что это определение можно найти даже в современных учебниках по физике. Нетрудно обнаружить, что оно представляет собой сжатое описание мысленного эксперимента по рассеиванию тяжелых частиц на атоме, который, в свою очередь, выступает идеализацией реальных экспериментов Резерфорда. Признаки конструкта "атомное ядро", введенные гипотетически, "сверху" по отношению к опыту, теперь были получены "снизу", как идеализация реальных экспериментов в атомной области. Тем самым гипотетический объект "атомное ядро" получил конструктивное обоснование и ему можно было придать онтологический статус. Таким образом, генерация нового теоретического знания осуществляется в результате познавательного цикла, который заключается в движении исследовательской мысли от оснований науки, и в первую очередь от обоснованных опытом представлений картины мира, к гипотетическим вариантам теоретических схем. Эти схемы затем адаптируются к тому эмпирическому материалу, на объяснение которого они претендуют. Теоретические схемы в процессе такой адаптации перестраиваются, насыщаются новым содержанием и затем вновь сопоставляются с картиной мира, оказывая на нее активное обратное воздействие (движение от оснований науки к гипотетической модели, ее конструктивному обоснованию и затем вновь к анализу и развитию оснований науки.).

(Гипотетические модели обретают статус теоретических представлений о некоторой области взаимодействий только тогда, когда пройдут через процедуры эмпирического обоснования. Это особый этап построения теоретической схемы, на котором доказывается, что ее первоначальный гипотетический вариант может предстать как идеализированное изображение структуры именно тех экспериментально-измерительных ситуаций, в рамках которых выявляются особенности изучаемых в теории взаимодействий. Можно в общем виде сформулировать основные требования, которым должно удовлетворять обоснование гипотетической модели. Предположив, что она применима к новой, еще не освоенной теоретически, предметной области, исследователь тем самым допускает: во-первых, что гипотетические признаки абстрактных объектов модели могут быть сопоставлены с некоторыми отношениями предметов экспериментальных ситуаций именно той области, на объяснение которой претендует модель; во-вторых, что такие признаки совместимы с другими определяющими характеристиками абстрактных объектов, которые были обоснованы предшествующим развитием познания и практики. Правомерность таких допущений следует доказывать специально. Это доказательство производится путем введения абстрактных объектов как идеализаций, опирающихся на новый опыт. Гипотетически введенные признаки абстрактных объектов получают в рамках мысленных экспериментов, соответствующих особенностям тех реальных экспериментально-измерительных ситуаций, которые призвана объяснить вводимая теоретическая модель. После этого проверяют, согласуются ли новые свойства абстрактных объектов с теми, которые оправданы предшествующим опытом.)

Методы исследования и их выбор

Подготовка к исследовательской работе включает и знакомство с основными принципами и методами научного исследования. Выбор мето­дов исследования зависит от определения темы, проблемы, выдвигае­мых предположений, целей и задач научного творчества. Все методы разделяются: 1) на теоретические (теоретический анализ и синтез, абстрагирование, конкретизация и идеализация, индукция и дедукция, аналогия, моделирование, сравнение, классификация, обобщение) и 2) эмпирические (наблюдение, беседы, рейтинг, как оценки компе­тентных арбитров, самооценка, педагогический консилиум, диагности-

ческие контрольные работы, изучение педагогического опыта, опыт­ная педагогическая работа, эксперимент). На некоторых из них необ­ходимо остановиться подробнее.

Теоретический анализ представляет собой прием мышления, кото­рый заключается в том, что в изучаемом явлении выделяются составля­ющие его части, элементы для специального, углубленного изучения. Теоретический синтез - это прием мышления, который сводится к выявлению существенных связей и отношений, в том числе и причин­но-следственных, между ранее выделенными элементами. В результате приобретается более глубокое знание о предмете изучения в целом, а также создается предпосылка для абстрагирования, сравнения и пос­ледующего обобщения. Этот метод применяется, например, при изуче­нии специальной литературы.

Анализ (от греч. analysis - «разложение, расчленение») как метод направлен на выявление в изучаемом тексте отдельных частей, напри­мер: а) основных элементов концепции автора; б) фактов в соответ­ствии с поставленными задачами; в) данных о состоянии изученности проблемы; г) сведений о вкладе отдельных ученых в разработку про­блемы; д) сведений об эффективности изучаемого направления конк­ретными формами и методами исследования.

Кроме упомянутого выше анализа существует метод синтеза (от греч. synthesis - «соединение, связывание») как целостное осмысле­ние предмета познания, его научное обобщение, которое базируется на системе доказательств и претендует на статус научной истины. Син­тез имеет целью воссоздать из выявленных элементов и фактов цель­ную картину, например: а) концепцию автора по заданной проблеме; б) состояние изученности проблемы; в) представление об эффектив­ности форм и методов обучения. Синтез позволяет объединить все данные, полученные при аналитической работе, и подчинить их едино­му видению существа решаемого вопроса. Способом осуществления синтеза выступает интерпретация - толкование, постижение целост­ного смысла, демонстрация концепции как оригинального прочтения. Всякая интерпретация тогда имеет ценность, когда она не противоре­чит «внешним критериям достоверности».

Результаты анализа и синтеза изученной литературы излагаются в связном тексте.

 

Прием аналогии. Под аналогией понимают сходство нетождествен­ных объектов по нескольким, но не по всем признакам (совпадение по всем признакам есть тождество). Простой пример: если предмет А обладает признаками а, Ь, с, d, e, /, а предмет В - признаками а, Ь, с, d, e, то есть предположение, что он обладает и признаком /. Вывод по аналогии по своей сути проблематичен, поэтому он нуждается в про­верке и доказательстве.

Прием аналогии заложен в основу метода моделирования как вос­произведения характеристик какого-либо объекта на другом объекте, специально созданном для их изучения. Применяется при условиях, невозможных для изучения оригинала (объект дорог, недоступен, нет времени). Суть метода в построении модели, изучении ее свойств и перенесении результатов исследования на оригинал. Этот метод при­меняется при проектной деятельности, для формирования новых сис­тем и пр. Моделирование от идеализации отличается тем, что идеаль­ный образ нельзя проверить в обычном эксперименте, он проверяется лишь на мысленном уровне.

Такой мысленный эксперимент представляет собой метод мыслен­ной имитации деятельности идеального объекта в различных ситуаци­ях. Можно привести пример из практики шахматной игры, когда шах­матисты разрабатывают в уме комбинации и просчитывают возможные варианты не только за себя, но и за противника. Мысленный экспери­мент проводят все люди, когда просчитывают возможные ходы и по­следствия какого-либо дела.

 

Проблема логики возникает всегда, как только ставится вопрос о правильном мышлении. Еще Аристотель понимал, что любое доказательство в конечном итоге зиждется на недоказуемых началах, одно из которых, как то ни парадоксально, и есть некоторая «правильность» мышления, без которой логика просто невозможна.

Логика выступает как средство, которым пользуются науки в наблюдении и эксперименте в исследовании определенных объектов, и это средство должно соответствовать предмету, с которым оно имеет дело. Хотя здесь, конечно, надо различать логику и ее приложения. Мы можем использовать логические методы и средства в исследовании того, что предметно не имеет отношения к логике.

Попытка частных наук решить свои проблемы, используя методы, развитые в логике, — ведет к формированию новой логики, прикладной логики, специфической логики и специфических проблем логики, решение которых необходимо для разрешения собственных проблем данной области знания. И это приводит к появлению новых тенденций, направлений в логике, новых логик и также новых неклассических логик, которые порождаются недостаточностью классических средств. Появляются особые неклассические логики, квантовая логика, например, в которых отражается специфика предметных проблем этой науки.

Задача логики — систематизация правильных форм рассуждения, и если интерес логика в его исследованиях концентрируется на математическом рассуждении, то предметом его занятий является математическая логика ]. Так возникает математическое направление в логике или математическая логика. Здесь проявилась близость методов логики и математики.

Развитию взглядов на предмет науки способствуют и происходящие в других областях знания изменения в понимании природы самого объекта, изучаемого логикой. В свете современных исследований в прагматике, лежащих на границах логики, лингвистики и философии толковать рациональное рассуждение как упорядоченную последовательность высказываний, означало бы абстрагироваться от существенных с точки зрения именно рациональных критериев, характеристик дискурса. Я оставляю в стороне сильно преувеличенные предположения о влиянии на форму логики предмета этого рассуждения. Объектом логики является не мир, а наши рассуждения о нем. Логические средства используются при построении рассуждений, в которых анализируется предметная область соответствующей науки. В той степени, в которой специфика предмета влияет на характер рассуждений о нем, предмет науки может влиять и на логическую форму этих рассуждений, проблемизировать привычные логические принципы, лежащие в основе рассуждений. Логические принципы не обладают онтологическим статусом непосредственно.

Но существенные изменения в наших взглядах на природу рассуждения порождаются не только тогда, когда в конкретных науках возникают проблемы формирования знания, рождаемого в результате исследования их предметной области. Рассуждение является специальным объектом исследования целого ряда наук, которые тоже вносят существенные изменения в наше знание о природе рассуждения. И логики не могут игнорировать эти изменения. Изменения в понимании природы рассуждения, которое является объектом исследования не только логики, но и целого ряда других наук, не могут не вносить изменений в толкование предмета самой логики.

Современная исследовательская традиция, получившая название «теория аргументации» обретает теоретическую определенность не в отрицании формальной логики, как это было в период ее становления, а в соединении современных методов логического анализа с прагматикой в исследовании дискурса. Иными словами, на мой взгляд, формирующаяся сейчас теория аргументации должна строится как логико-прагматическое исследование аргументативной коммуникации.

Обращая внимание на логику различных ученых в некоторых области физики, Томас Кун пришел к выводу, что история науки не была линейным процессом накопления знаний, скорее это чередование периодов «нормальной науки» и отрицающей ее «революционной науки». Свою идею Кун разворачивает через понятие парадигмы, которая представляет собой образец «нормальной науки» (модель мышления) на определенных этапах развития знания. Парадигма суть социальный конструкт, т.к. поддерживается коллективом ученых, но Кун не развивает эту идею, в отличие от своего оппонента Имре Лакатоса, который смещает фокус своего внимания в сторону понятия научно-исследовательской программы. Именно это и делает возможным постановку вопроса о том, каким образом вообще может быть организована и структурирована научно-исследовательская деятельность, каким образом институционализируется процесс развития научного знания. Ведь невозможно организовать группу людей для совершения определенного совместного действия, не опираясь при этом на некоторые моральные принципы или нормативный контекст. Впоследствии отсюда рождается концепция невидимого колледжа, однако вернемся ненадолго к Куну.

Фактически Кун совершил то, на что не хватало духа ни у кого из его предшественников ¾ впустил в сферу науки субъективный фактор (личность учёного-исследователя), объяснив выбор парадигмальных пристрастий вопросом веры… И это не могло не закончиться плачевно. Беспристрастно исследуя науку, Кун, однако, не зашёл слишком далеко, удерживая тонкую грань между личностным и догматическим в науке. Пол Фейерабенд нарушил эту грань, и, в своем стремлении избавиться от научного догматизма, привнес в дискуссию о структуре научного знания принцип вседозволенности, который впоследствии стал одной из основ постмодернизма. Чтобы теория "не скучала", Фейерабенд предложил подбрасывать ей как можно больше противников: коллекционировать факты, противоречащие ей, или размножать альтернативные теории (пролиферация). При этом, что это за теория ¾ уже не важно, факты для неё подобрать мы потом всегда успеем. В этой ситуации возникает справедливый вопрос о том, какое знание в этом случае можно считать легитимным, т.е. законным и социально одобренным? На что ориентироваться? Что является критерием легитимности: аргументация, эксперимент, формальный статус носителя знания, простой здравый смысл, или что-то еще?

С другой стороны, Роберт Мертон актуализировал в своих работах социальную сторону процесса развития научного знания. Сформулированные им принципы научного этоса (универсализма, коммунизма, незаинтересованности, организованного скептицизма) по своей сути есть ничто иное, как определенный свод ценностей и принципов, правил и норм, которыми должен руководствоваться ученый и которые формируют его профессиональное поведение, определяя принадлежность к научному сообществу. Наука, таким образом, выступает как институционально оформленный процесс, или другими словами, как игра по правилам, принятым и поддерживаемым коллективом ученых. После Мертона правила научного этоса постоянно, модифицировались, дополнялись или подвергались опровержениям (см. например работы Н. Сторера, Д. Блура, Б. Латура, М. Малкея и др.). В спорах за объективность социального знания и в борьбе за право реализовать свою программу социологи направления ушли от первоначальной постановки вопроса и сегодня можно сказать, что направления критики постепенно исчерпали себя, однако идея научного этоса как внутреннего механизма развития науки сохранялась. Образ ученого формирующийся в общественном сознании стал символическим воплощением правил организации научного знания.

Итак, что мы имеем сегодня и почему проблематика оценки механизмов развития научного знания как институционализированного процесса актуальна для развития современной России? В контексте продолжения образовательной реформы и становления вузовской науки вхождение в мировые процессы развития без рефлексии прошлого опыта, означает попадание в рамку тех, кто начинает использовать международные образовательные стандарты в своих целях (а не устанавливать свои). Для этого нужно понимать не только то, какими стандартами в этом процессе мы руководствуемся, но и то, как они формируются, и как мы сами можем формировать эти стандарты. Для понимания этого, как нам кажется, нужно сосредоточить свое внимание не только на тенденциях и механизмах экономического развития, но и обратить свое внимание на науку как институционально оформленный процесс развития нового знания, находящийся в непосредственной связи с быстро меняющимися экономическими условиями.

 

29. Становление развитой научной теории. Классический и неклассический варианты формирования теории. Генезис образцов решения задач.

 

Проблемы методологии научного познания стали особенно интенсивно разрабатываться в нашей литературе в начале 60-х годов. В эти годы в наших исследованиях по философии науки происходил поворот от доминирования онтологической проблематики философии естествознания (анализ категорий пространства и времени, причинности и т.п.) к проблематике методологического анализа. Центральное место заняли исследования а

Много проблем вызывала известная формула “выбор языка определяет выбор объекта”. Наши критики буржуазной философии интерпретировали ее как отказ от материализма и выражение субъективизма. Сама по себе эта формула не содержит никакого субъективизма, и вполне справедлива применительно, например, к формализованным языкам, которые могут получать интерпретацию в тех или иных системах идеальных (абстрактных) объектов. Проблема же связи языка и внеязыковой реальности решается в зависимости от того, как трактуется отношение к ней идеальных объектов.

Ответ на этот вопрос может быть разным в зависимости от принятых философских установок: идеальные объекты языка могут отождествляться с внеязыковой реальностью (платонизм), могут полагаться только схематизацией чувственного опыта, который рассматривается как последняя реальность (субъективный идеализм) и наконец, могут рассматриваться как упрощающие действительность, ее относительно правильные ее образы.

Следующий важный шагсостоял в продуктивной попытке эксплицировать признаки, различающие идеальные объекты теоретического и эмпирического языка. Эти идеи и послужили своеобразной стартовой площадкой для моих исследований середины 60-х начала 70-х годов и для последующих работ минской методологической школы.

Анализ языка науки был осуществлен под углом зрения и типологии высказываний и соответствующих им идеальных объектов. Общая структура научного знания, определяемая различием и взаимосвязью его теоретического и эмпирического уровней, была значительно детализирована. Были обнаружены особые подсистемы теоретических и эмпирических идеальных объектов, образующие внутреннюю структуру эмпирического и теоретического уровней. Оказалось, что система теоретического знания научной дисциплины включает ряд относительно автономных подсистем теоретических конструктов, которые в своих связях и отношениях выступают в качестве моделей исследуемой предметной области. Эти модели, которые я предложил назвать теоретическими схемами, включаются в состав теории, в отличие от аналоговых моделей, которые служат только своеобразными строительными лесами при становлении теории. Кроме теоретических схем, образующих ядро теории, среди конструктов теоретического языка была выделена особая подсистема, которая образует научную картину мира. Проекция на нее теоретических схем придает им онтологический статус и обеспечивает семантическую интерпретацию математических формулировок теоретических законов (уравнений теории). Связь же теоретических схем с опытом определяет эмпирическую интерпретацию уравнений. При анализе типов теоретических схем, включаемых в состав развитой теории, была обнаружена их иерархическая соподчиненность.

Выводимые из фундаментальных законов теории их теоретические следствия (законы более специального характера) получают интерпретацию на системе особых конструктов, которые образуют частные теоретические схемы, подчиненные фундаментальной, но вместе с тем имеющие относительно автономный статус. В механике – это теоретические модели колебания, движения тела в поле центральных сил, соударения упругих тел и т.д. В классической электродинамике – это теоретические схемы электростатики, магнитостатики, электромагнитной индукции и т.д.

В этой связи возникал вопрос о роли теоретических схем в дедуктивном развертывании теории. Ответ не него привел к радикальному пересмотру представлений о теории как гипотетико-дедуктивной системе. И здесь важным импульсом вновь послужили идеи В.А.Смирнова о генетически-конструктивном методе построения теории.

В отличие от аксиоматического метода, при котором “за исходное берут некоторую систему высказываний, описывающих некоторую область объектов, и систему логических действий над высказываниями, генетический метод предполагает оперирование непосредственно абстрактными объектами, когда процесс рассуждения осуществляется в форме мысленного эксперимента над этими объектами.

Анализ физических теорий под этим углом зрения обнаружил, что мысленные эксперименты с абстрактными объектами теоретических схем играют решающую роль в дедуктивном развертывании теории.

Особенности функционирования теорий в опытных науках можно соотнести с известными идеями Т.Куна, что ТЕОРИЯ ВКЛЮЧАЕТ В СВОЙ СОСТАВ ПАРАДИГМАЛЬНЫЕ ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ, в соответствии с которыми решаются другие задачи. Т.Кун не определил в форме методологического описания в чем заключается структура образцов и процедуры их применения. Он только указал через ряд экземплификаций на сами эти образцы и обозначил роль аналогий в их функционировании.

Выявление теоретических схем и применение идей генетически конструктивного подхода позволило сделать следующий шаг – представить парадигмальные образцы как способ редукции фундаментальной теоретической схемы к частным. На этом пути открывалась возможность решить и проблему генезиса образцов, которая по существу была поставлена Т.Куном, но не нашла своего решения в западной философии науки. Ключ к ее решению заключался в исследовании того, как создаются фундаментальные теоретические схемы, составляющие ядро развитой научной теории.

Проблема генезиса парадигмальных образцов

Чтобы охарактеризовать основные операции их построения, я использую осуществленную мной еще в начале 70-х годов совместно с Л.М.Томильчиком реконструкцию истории классической электродинамики. Несколько позднее я уточнил ряд деталей этой реконструкции при подготовке своей книги “Становление научной теории” (1976). На этом этапе, опираясь на уже полученные основные результаты проделанной реконструкции, я предложил решение проблемы парадигмальных образцов. Они предстали в качестве закономерного итога построения фундаментальной теоретической схемы, лежащей в основании развитой теории.

Применение аналогий является универсальной операцией построения новой теории. Научные теории не являются изолированными друг от друга, они развиваются как система, где одни теории поставляют для других строительный материал.

Абстрактные объекты, транслированные из одной системы знаний (в нашем примере из системы знаний об электричестве и магнетизме) соединяются с новой структурой (“сеткой отношений”), заимствованной из другой системы знаний (в данном случае из механики сплошных сред). В результате такого соединения происходит трансформация аналоговой модели. Она превращается в теоретическую схему новой области явлений, схему на первых порах гипотетическую, требующую своего конструктивного обоснования.

Движение от картины мира к аналоговой модели и от нее к гипотетической схеме исследуемой области взаимодействий составляет своеобразную рациональную канву процесса выдвижения гипотезы.

Важно подчеркнуть, что соединение абстрактных объектов, почерпнутых из одной области знания, со структурой (“сеткой отношений”), заимствованной в другой области знания, приводит к тому, что в новой системе отношений абстрактные объекты наделяются новыми признаками. Это эквивалентно появлению в гипотетической модели нового содержания, которое может соответствовать еще не исследованным связям и отношениям предметной области, для описания и объяснения которой предназначается выдвигаемая гипотеза.

Предположив, что созданная таким путем гипотетическая модель выражает существенные черты новой предметной области, исследователь тем самым допускает, во-первых, что новые, гипотетические признаки абстрактных объектов имеют основание именно в той области эмпирически фиксируемых явлений, на объяснение которых модель претендует, и, во-вторых, что эти новые признаки совместимы с другими определяющими признаками абстрактных объектов, которые были обоснованы предшествующим развитиям познания и практики. Понятно, что правомерность таких допущений следует доказывать специально. Это доказательство производится путем введения абстрактных объектов в качестве идеализаций, опирающихся на новый опыт. Признаки абстрактных объектов, гипотетически введенные “сверху” по отношению к экспериментам новой области взаимодействий, теперь восстанавливаются “снизу”. Их получают в рамках мысленных экспериментов, соответствующих типовым особенностям тех реальных экспериментальных ситуаций, которые призвана объяснить теоретическая модель. После этого проверяют, согласуются ли новые свойства абстрактных объектов с теми, которые оправданы предшествующим опытом.

Весь этот комплекс операций обеспечивает обоснование признаков абстрактных объектов гипотетической модели и превращение ее в теоретическую схему новой области взаимодействий. Будем называть эти операции конструктивным введением объектов в теорию. Теоретическую схему, удовлетворяющую описанным процедурам, будем называть конструктивно обоснованной.

Конструктивное обоснование обеспечивает привязку теоретических схем к опыту, а значит, и связь с опытом физических величин математического аппарата теории. Именно благодаря процедурам конструктивного обоснования в теории появляются правила соответствия, обеспечивающие эмпирическую интерпретацию ее математического аппарата.

Взаимодействие операций выдвижения гипотезы и ее конструктивного обоснования является тем ключевым моментом, который позволяет получить ответ на вопрос о путях появления в составе теории парадигмальных образцов решения задач.

Поставив проблему образцов, западная философия науки не смогла найти соответствующих средств ее решения, поскольку не выявила и не проанализировала даже в первом приближении процедуры конструктивного обоснования гипотез.

При обсуждении проблемы образцов Т.Кун и его последователи акцентируют внимание только на одной стороне вопроса – роли аналогий как основы решения задач. Операции же формирования и обоснования возникающих в этом процессе теоретических схем выпадают из сферы их анализа.

На заключительной стадии теоретического синтеза, когда были получены основные уравнения теории и завершено формирование фундаментальной теоретической модели, исследователь произвел последнее доказательство правомерности вводимых уравнений и их интерпретаций: на основе фундаментальной теоретической схемы он сконструировал соответствующие частные теоретические схемы, а из основных уравнений получил в новой форме все обобщенные в них частные теоретические законы. На этой заключительной стадии формирования максвелловской теории было доказано, что на основе фундаментальной теоретической схемы электромагнитного поля можно получить в качестве частного случая теоретические схемы электростатики, постоянного тока, электромагнитной индукции и т.д., а из обобщающих уравнений электромагнитного поля можно вывести законы Кулона, Ампера, Био-Савара, законы электростатической и электромагнитной индукции, открытые Фарадеем, и т.д.

Эта заключительная стадия одновременно предстает как изложение “готовой” теории. Процесс ее становления воспроизводится теперь в обратном порядке в форме развертывания теории, вывода из основных уравнений соответствующих теоретических следствий. Каждый такой вывод может быть расценен как изложение некоторого способа и результата решения теоретических задач.

Содержательные операции построения теоретических схем, выступающие необходимым аспектом обоснования теории, теперь приобретают новую функцию – они становятся образцами операций, ориентируясь на которые исследователь может решать новые теоретические задачи. Таким образом, образцы решения задач автоматически включаются в теорию в процессе ее генезиса.

После того как теория построена, ее дальнейшая судьба связана с ее развитием в процессе расширения области приложения теории.