Оптика. Корпускулярно-волновой дуализм света.
Корпускулярно-волновой дуализм — представления о двуединстве материального мира, в котором все объекты обладают как волновыми, так и корпускулярными свойствами. Впервые такой дуализм был обнаружен при исследованиях света, ведущего себя, в зависимости от условий эксперимента, то как электромагнитная волна (оптика), то как дискретная частица (химическое действие света). Первое время учёным казалось, что представление о свете, как о электромагнитной волне, и как о потоке частиц, исключают друг друга. Постепенно осознание реальности дуализма материи стало привычным. В настоящий момент концепция корпускулярно-волнового дуализма представляет преимущественно исторический интерес, так как она служила способом описать сложное поведение квантовых объектов, находя ему аналогии из области классической физики. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в определённых экспериментах, описание которых проводится в определённом приближении.
Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.
Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.
Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.