Вентиляция картера
Вентиляция картера предназначена, для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через неплотности поршневых колец и их взаимодействия с парами масла. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.
На двигателях колесных и гусеничных машин применяются системы вентиляции двух типов:
открытая — с отводом картерных газов в атмосферу;
закрытая — с отсасыванием газов во впускную систему двигателя.
Открытая вентиляция (рис. 6. а) осуществляется под действием
разрежения, возникающего в вытяжной трубе, вследствие относительного перемещения воздуха при движении автомобиля. В месте забора картерных газов во внутренней полости двигателя выполняют маслоулавливающие устройства. Свежий воздух поступает в1 картер через специальный патрубок 2 (сапун), который обычно используется и для заправки системы маслом. Во избежание попадания пыли внутрь картера сапуны имеют воздушные фильтры. Не достатком открытой вентиляции является ее низкая интенсивность и возможность попадания газов в кабину или кузов в случае работы двигателя на стоянке.
При закрытой системе вентиляции (рис. 6.б) интенсивность отсоса картерных газов значительно повышается, а в поддоне создается разрежение, надёжно предотвращающее утечку масла через уплотнения.
В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод.
Отвод газов в воздухоочиститель не создает интенсивности отсоса на режимах минимальных чисел оборотов и полной нагрузки. Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей, нарушающее нормальную работу системы смесеобразования. Поэтому в ряде моделей карбюраторных двигателей применяется система вентиляции с отсосом газа непосредственно во впускной трубопровод, в котором всегда имеется повышенное разрешение.
Чтобы предотвратить чрезмерный подсос газов и нежелательное разбавление горючей смеси на режимах холостого хода и малых нагрузок, в вентиляционной трубке таких систем устанавливают клапан. Клапан, занимая под действием разрежения различные положения по высоте, перекрывает проходное сечение канала и регулирует отсос газов из картера. При большом разрежении клапан поднимается и, уменьшая проходное сечение, ограничивает вентиляционный поток
Для предотвращения попадания воды в поддон при преодолении брода полость поддона разобщается с впускным трубопроводом с помощью специального крана.
Рис. 6. Схемы вентиляции картера:
а - открытая; б - закрытая; 1 - воздушный фильтр вентиляции картера; 2 - сапун; 3 выпускной патрубок; 4 - маслоотражатель; 5 - клапан вентиляции картера
9. Моторные масла и требования к ним
В ДВС для смазки и охлаждения подвижных деталей, удаления загрязняющих частиц, нейтрализации химически активных продуктов сгорания, а также передачи усилий и демпфирования колебаний применяется моторное масло.
В поршневых двигателях для смазки деталей используют масла главным образом нефтяного происхождения. Физико-химические свойства масел обусловлены в специальных ГОСТах.
Один из основных показателей моторных масел — вязкость, так как от нее зависят гидродинамический режим смазки трущихся деталей и механические потери в двигателе. Вязкостью масла называется его внутреннее сопротивление течению, обусловливаемое внутренним трением. Кинематическая вязкость оценивается при температуре 100°С в сантистоксах и является основой классификации и маркировки моторных масел. Вязкость масла влияет на прокачиваемость его через зазоры в узлах трения, а следовательно, на отвод теплоты от трущихся поверхностей и охлаждаемых деталей. Масла с малой вязкостью при прочих равных условиях лучше отводят теплоту и быстрей выносят продукты износа трущихся деталей. Кинематическая вязкость не должна резко изменяться в диапазоне температур от 90 до 120°С.
С вязкостью масла связан его расход вследствие выгорания. Из-за насосного действия поршневых колец масло попадает в камеру сгорания и сгорает там. В камеру сгорания масло может проникнуть также и через зазоры между стержнями клапанов и их направляющими. Масла с большей вязкостью выгорают в меньшем количестве.
При граничном трении коэффициент трения зависит не только от вязкости масла, но и от содержания в масле поверхностно-активных веществ, способных адсорбироваться на трущихся поверхностях. Адсорбированная пленка препятствует непосредственному контакту трущихся поверхностей, что уменьшает силу трения и износ. Способность масла обеспечивать смазывающее действие в условиях граничного трения называют маслянистостью. Для форсированных двигателей и двигателей, работающих длительное время на неустановившихся режимах, желательно применять масла с высокой маслянистостью.
Способность масла вызывать коррозию омываемых им деталей двигателя зависит от количества содержащихся в нем кислот и определяется кислотным числом. Кислотное число представляет собой количество миллиграммов щелочи КОН, необходимой для нейтрализации органических кислот в 1 г масла, которое должно быть минимальным. Для снижения коррозии деталей техническими условиями на моторные масла предусматривается отсутствие водорастворимых кислот, строго ограничивается кислотное число масла без присадки и регламентируется норма на коррозию свинцовых пластинок.
Моторное масло, попадая в камеру сгорания или соприкасаясь с раскаленными деталями двигателя, окисляется с образованием различных твердых или смолистых веществ, количество которых определяется зольностью и коксуемостью его. Зольность хорошо очищенных минеральных масел без присадок составляет тысячные доли процента. В моторных маслах в зависимости от количества введенных зольных присадок зольность повышается до 1,65%. Коксуемость является суммарным показателем, характеризующим степень окисления масла и количество продуктов неполного сгорания топлива (сажи). В технических условиях на моторные масла установлены нормы на коксуемость и зольность масел, характеризующие степень их очистки. Свойство масла выносить из зазоров между трущимися поверхностями продукты износа и другие твердые частицы называют моющей способностью. Моющие свойства моторных масел оценивают в баллах по ГОСТу, на специальной установке ПЗВ, и должно составлять не более 1,0 балла.
В процессе длительной работы в двигателе масло подвергается воздействию высоких температур, кислорода воздуха и других агрессивных газов, содержащихся в продуктах сгорания, которые прорываются в картер через уплотнения. Способность масла сохранять основные эксплуатационные свойства в течение длительного времени называют стабильностью. Для оценки термоокислительной стабильности масел применяются лабораторные методы, оговоренные соответствующими ГОСТами.
Чистые минеральные масла не обладают всеми предъявляемыми к ним требованиями, поэтому к моторным маслам добавляют вещества, называемые присадками, которые существенно улучшают эксплуатационные свойства масел.
Моторные масла должны удовлетворять требованиям фирм-изготовителей, по качеству, наличию необходимых присадок и вязкостно-температурным показателям. Маркировка любого масла состоит из обозначения применимости, класса вязкости по SAE и уровня эксплуатационных свойств по API или АСЕА.
По эксплуатационным свойствам присадки подразделяются на масла для искровых, дизельных двигателей и универсальные.
Классификация по API (American Petroleum Institute), принятая в США, разделяет моторные масла на 2 категории: S (сервис-класс) - для бензиновых двигателей и C (коммерческий класс) - для дизельных. Масла, которые можно использовать как в бензиновых, так и в дизельных двигателях, обозначаются дробной маркировкой - они называются универсальными.
В дизельное моторное масло из за высокого содержания серы в топливе попадает большее количество кислот - требуется большее количество щелочи (щелочное число, мг КОН/г - гидроокиси калия на нейтрализацию кислот в 1 г масла). При работе дизельного двигателя образуется сажа - требуется большее количество моющих присадок дисперсантов. Разница в маслах - в сульфатной зольности. Она влияет на склонность бензиновых двигателей к нагарообразованию. Чем больше в масле присадок, тем лучше все его свойства, но больше зольность. Бензиновая норма по стандарту - не более 1,3%. В легковых дизелях допускается до 1,8%, в грузовых - до 2%.
Перечень присадок:
- вязкостные (до 10% от общего объема присадок). Повышают вязкость при высокой температуре. Высокомолекулярные полимеры - полиизобутилены, полиметакрилаты и другие. Механизм их действия основан на изменении формы макромолекул полимеров в зависимости от температуры: в холодном состоянии свернуты в спираль и не влияют на вязкость, при нагреве же они распрямляются, и масло не становится слишком жидким. При большом содержании масла называют загущенными - это зимние и всесезонные сорта;
- депрессорные (до 1%). Снижают температуру застывания на 20˚ C и более. Они предотвращают образование парафиновых кристаллов при низких температурах;
- противоокислительные (до 3%). Делятся на присадки-ингибиторы, работающие в общем объеме масла, и на термоокислительные присадки, выполняющие свои функции на нагретых поверхностях. Используются соединения серы и фосфора, фенолы и амины;
- противокоррозионные - защищают поверхность металлических деталей за счет образования прочной масляной пленки, предохраняющей от контакта с кислотами и водой;
- моющие (до 15-20%). Они представляют собой сульфонаты, феноляты и фосфонаты различных металлов. Моющие присадки нужны для предотвращения образования лаковых и сажевых отложений на деталях двигателя. Состоят из де- тергирующих компонентов - вымывают продукты окисления масла и износа деталей, и диспергирующих - способствуют дроблению крупных частиц нагара на мелкие, удерживают грязь в мелкодисперсном состоянии, не дают ей слипнуться в большие комки и пригореть к металлу;
-противоизносные и противозадирные (до 2%), содержащие хлор, фосфор и серу, призваны сохранять устойчивость масляной пленки между трущимися деталями двигателя;
-противопенные (обычно это силиконы или полилоксаны) не растворяются в моторных маслах, а присутствуют в виде мельчайших капелек. Их действие основано на разрушении пузырьков воздуха. Присутствие не должно превышать тысячных долей процента - при термическом разложении силикона образуется оксид кремния, который является сильным абразивом.
-модификаторы трения - плакирующие присадки, содержащие в своем составе мелкодисперсные частицы специального вещества или соединения: дисульфида молибдена (MoS2), тефлона (политетрафторэтилена - ПТФЭ) и другие. Образует на поверхности трения устойчивое лакообразное соединение, уменьшающее трение.
Моторное масло состоит из основы (базового масла) и присадок, которые призваны разнообразить его качество и свойства. По роду исходного сырья основы могут быть либо нефтяными (минеральными), либо синтетическими.
Минеральные.
Представляют сложную смесь углеводородов. Химический состав минеральных основ зависит от качества нефти, пределов выкипания отбираемых масляных фракций, а также методов и степени их очистки. При прямой перегонке мазута из него выделяются масляные фракции с низкой вязкостью - такие минеральные основы называются дистиллятными. Основы же повышенной вязкости получают из того, что остается после перегонки - гудрона и полугудрона, эти масла так и называются остаточными. Для получения базового масла с заданным уровнем вязкости дистиллятные и остаточные основы смешивают в определенных пропорциях.
Синтетические
Масла на синтетической основе - диэфирные, полиалкиленгликолевые, фторуглеродные, силиконовые и др. получаемые в процессе химических реакций имеют однородный состав с преобладанием предельных углеводородов. Исходным сырьем служат природные ископаемые и растительные углеводороды.
Преимущества:
- обладают отличными вязкостно-температурными характеристиками. Во- первых, гораздо более низкая, чем у минеральных, температура застывания (-50˚... -60˚ C) и очень высокий индекс вязкости, то есть относительно небольшое изменение вязкости в зависимости от изменений температуры, что облегчает запуск двигателя при низких температурах. Во-вторых, они имеют более высокую вязкость при рабочих температурах свыше 100˚ C - благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах;
- лучшая стойкость к окислению;
- имеют высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления);
- меньшая испаряемость и расход на угар;
- больший ресурс, так как имеют минимальное количество загущающих присадок (особо высококлассные сорта масла не требуют таких присадок вообще), а разрушаются в процессе эксплуатации именно присадки. Их ресурс превышает ресурс минеральных в 5 раз - (некоторые сорта необходимо менять через 50 тыс. км пробега);
- способствуют снижению общих механических потерь в двигателе и уменьшению износа деталей.
Недостатки:
- неблагоприятное воздействие на резиновые материалы;
- повышенная коррозионная активность;
- ограниченная растворимость присадок;
- чувствительны к попаданию воды.
Полусинтетические
Фактором, ограничивающим применение синтетических масел, является их высокая стоимость. Они в 3-5 раз дороже минеральных. В связи с этим многие фирмы производят полусинтетические масла - в минеральное масло вводят 2550% синтетики. Компромисс этот весьма удачный: по качеству и по цене полу- синтетика находится между синтетикой и минеральными маслами.
Вязкостно-температурные свойства масла (изменение вязкости в зависимости от температуры) должны обеспечивать:
- при низкой температуре прокручивание двигателя стартером и прокачивае- мость по смазочным каналам;
- при высокой температуре надежное создание масляной пленки между трущимися поверхностями и поддержание необходимого давления в смазочной системе.
Классификация по вязкости SAE (Society of Automotive Engineers), принятая в США и Западной Европе, делит масла на 11 классов: 5 летних (20, 30, 40, 50, 60) и 6 зимних (0W, 5W, 10W, 15W, 20W, 25W). Всесезонные масла обозначаются двойным или дробным индексом - это означает, что при минусовых температурах масло удовлетворяет требованиям, предъявляемым к зимним классам, а при плюсовых - к летним.
При выборе масла для зимней эксплуатации из 35 вычесть индекс класса вязкости зимнего масла, получится величина, называемая предельной температурой прокачиваемости - по ней можно судить, при какой температуре масло еще сохраняет текучесть. Например, SAE 15W/40. В этом примере: 35 - 15(W) = 20. Значит, маслом можно пользоваться при температурах до -20 C.
В процессе эксплуатации масло теряет свои свойства.
В любом масле при его старении протекают два параллельных процесса: окисление масляной основы, приводящее к увеличению вязкости, и одновременное разрушение загущающих присадок, ведущее к снижению вязкости. В базовом масле два этих процесса уравновешивают друг друга и его вязкость почти не изменяется.
Кроме того, масло постепенно насыщается продуктами износа деталей двигателя и коррозии металлов, водой, газами, топливом, которые не только ухудшают качество самого масла, окисляя его, но и, попадая на горячие поверхности, способствуют образованию на них различных отложений. В высокотемпературных зонах, например, в камере сгорания, куда масло неизбежно проникает, появляются твердые, плохо удаляемые нагары. В среднетемпературных зонах (стенки поршней и цилиндров, поршневые кольца и пальцы) - лаки. Нагары и лаки увеличивают термонапряженность деталей, их износ, могут вызвать детонацию, задиры, прогорание поршневых колец и так далее. Низкотемпературные отложения - мазеобразные шламы, образующиеся на всех деталях двигателя, кроме особо горячих - забивают каналы системы смазки, что существенно затрудняет подачу масла к трущимся частям. Кроме того, шламы могут вызвать срабатывание перепускного клапана масляного фильтра, в результате чего масло начнет циркулировать в системе, не очищаясь. Скорость накопления отложений зависит от многих факторов: некачественное топливо с высоким содержанием серы, изношенный двигатель, частая езда с непрогретым мотором и на малых оборотах, неисправная система зажигания.
Если историю расхода масла исправным двигателем изобразить в виде графика, то он будет выглядеть как классический график из теории надежности, состоящий из трех частей. В принципе, любая техника проходит три стадии функционирования.
Первая стадия работы - приработка, при которой расход масла, поначалу большой, постепенно снижается. Для двигателя длительность обкатки составляет обычно от 5 до 10 тыс. км. Например, BMW определяет время обкатки своих двигателей в 7,5 тыс. км. В начале работы количество отказов велико, что связано с ошибками сборки, регулировки или просто с приработкой агрегатов. Приработка (она же - обкатка) может сильно повлиять на дальнейший ресурс двигателя. В дальнейшем имеет очень большое значение, как был обкатан двигатель.
Вторая стадия - основная работа двигателя, при этом расход масла невелик и стабилен. Этот участок графика - основной ресурс двигателя, на который он рассчитан производителем. Кто планирует 200, кто 300 тыс. км. Реально он может оказаться и 150, а может еще меньше - все зависит от условий эксплуатации.
Третья стадия - старение двигателя, при котором расход масла лавинообразно возрастает. Третий участок кривой - это постепенное разрушение техники, сопровождающееся растущим числом отказов и поломок. По сути, вся теория надежности машин и механизмов укладывается в этот график.
Хотя расход масла, на первый взгляд, не имеет прямого отношения к обкатке и ресурсу двигателя, он все же определяется общим техническим состоянием двигателя - в моторе все взаимосвязано.
По российским нормативам, расход масла приводится по отношению к расходу горючего, а не к пробегу. Так, например, средний расход масла автомобилями ВАЗ всех модификаций - 0,6 л на 100 л общего расхода топлива. А средний расход масла автобусами IKARUS от 180-й до 280-й модели - 4,5 л на 100 л общего расхода топлива. Вообще-то, принято считать, что потребление двигателем масла находится в рамках нормального, если его расход удерживается в пределах от 0,2 до 0,8 % от расхода топлива.
Обычные причины повышенного расхода масла - износного характера, из-за большого пробега автомашины. Кроме того, износ могут ускорить несвоевременное обслуживание или применение некачественного или поддельного масла. Часто бывает, что условия эксплуатации автомобиля слишком тяжелые, что тоже приводит к ускоренному износу двигателя.