Расчет свободной энергии Гиббса и энтропии вещества при давлении, отличном от давления при стандартных условиях
Молярные энтальпия , теплоемкости и внутренняя энергия зависят только от температуры:
Молярные энтропия , свободная энергия Гиббса , свободная энергия Гельмгольца зависят от температуры и давления.
Установим связь между величинами: и их значениями при стандартном состоянии которые определяются с использованием справочных материалов.
Получим сначала выражение для свободной энергии Гиббса. Из объединенного выражения 1 –го и 2 –го законов термодинамики для простой, закрытой ТС и для обратимых процессов для 1 моля вещества имеем:
При T=const (dT = 0) получаем , где . Откуда после интегрирования для конечного процесса в диапазоне давлений от р0 до р имеем
, или (1)
где -молярная свободная энергия Гиббса при р0=1физ.атм, - то же при давлении . Зависимость (1) справедлива для газообразных и конденсированных веществ при Т=const.
Для идеального газа, . Следовательно, а интеграл в (1) будет равен . Обозначив через безразмерное давление; где р0 = 101325Па; ~ тильда, получим для идеального газа формулу для расчета свободной энергии Гиббса при давлении р≠р0:
, (2)
Если вещество находится в газовой смеси, то для i-ого компонента смеси идеальных газов имеем:
, (3)
где нормированное парциальное давление и нормированное давление смеси связаны соотношением , учитывающим молярную долю i-го газа, , а давление смеси газов определяется законом Дальтона .Для получения формулы для расчета , выраженной через молярные доли, представим формулу (3) в виде:
(4)
Обозначим - молярную свободную энергию Гиббса i-го газа при давлении смеси. Тогда получим
. (5)
Молярные свободные энергии Гиббса конденсированных веществ от давления не зависят, поскольку можно пренебречь их объемами по сравнению с объемами газообразных компонентов. Тогда формула для расчета конденсированных веществ примет вид:
, (6)
где хi – молярная доля i-го вещества относительно фазы, в которой оно находится(к числу молей своей фазы), — молярная свободная энергия Гиббса чистого конденсированного вещества, при p=p0=101325Па.
Влияние давления на энтропию может быть определено из выражения для молярной свободной энергии Гиббса для i-го компонента идеального газа при давлении p ≠p0
,
из которого следует, что
(7)
где . (8)
После подстановки (8) в (7) и учитывая, что , получим:
. (9)
Для i-го компонента конденсированного вещества по аналогии с выражением (9) можно получить формулу для расчета энтропии при p ≠p0
(10)
Величина - берется из справочника при р0 =101325 Па.