Моделирование движения небесных тел.

Указанное моделиро­вание опирается на знания учащихся, почерпнутые при изучении «она всемирного тяготения. Оно позволяет углубить знания, связанные с движением тел Солнечной системы, элементами астро­номии.

Тема начинается с рассмотрения модели движения космического тела (планеты, кометы, спутника) в гравитационном поле, создаваемом телом с многократно большей массой. Напомните учащимся физический закон, регулирующий данное движение, — закон всемирного тяготения; для моделирования существенна запись этого закона в векторной форме.

Важный методический (и содержательный) момент — выбор системы координат, в которой рассматривается движение. Если ее центр расположить произвольно, то возникает задача о движении двух взаимно тяготеющих тел с весьма сложными траекториями. Напомните учащимся, что исторически астрономы, начиная с Птолемея и включая Коперника, рассматривали движение относительно одного из тел (т.е., говоря более формально, в системе координат, связанной с этим телом). В системе Коперника такойсистемой координат при изучении Солнечной системы стало солнце. Это резко упрощает задачу, позволяет заниматься изучением движения лишь одного из тел.

Процедура получения системы дифференциальных уравнений движения в указанной системе координат описана в ряде пособий (см., например, [5, 9]).

Следует обратить внимание учащихся на то, что в этой задаче особенно неудобно работать с размерными величинами, измеряемыми миллиардами метров, секунд и т.д. Для выбора типичных величин, с помощью которых естественно произвести обезразмеривание, можно рассуждать так. При некоторых условиях, как известно, орбита движения «малого» небесного тела может быть круговой. Соотношения параметров, характеризующих эту круговую орбиту, нетрудно установить, так как при круговом движение сила тяготения играет роль центростремительной силы. Таким образом, достаточно произвольно выбрать один параметр — типичное расстояние, а для скорости и времени параметры для обезразмеривания тем самым найдены.

В качестве первой содержательной задачи можно рассмотреть движение небесных тел вокруг Солнца. Тогда в качестве типичного расстояния естественно принять характерное расстояние от Земли до Солнца (так называемая астрономическая единица). После обезразмеривания оказывается, что уравнения в безраз­мерных переменных вообще не содержат параметров! Единствен­ное, что отличает режимы движения друг от друга — это началь­ные условия.

Вернемся к исследованию движения небесных тел в Солнеч­ной системе. Учащиеся задают некоторые (возможно, произволь­ные) начальные условия и интегрируют уравнения. Первая цель построить траекторию движения и поэкспериментировать, какой будет меняться при изменении начальных условий (например, скорости).

Далее исследование можно усложнить. Так, при движении по замкнутым орбитам можно поставить задание: проверить справедливость законов Кеплера о соотношении параметров орбиты; при движении по незамкнутым орбитам — доказать, что ее формой будет гипербола, и т.д. Многие задания для самостоятельной работы можно найти в задачнике [5].

Если придерживаться методики, избегающей упоминания о дифференциальных уравнениях вообще, то уравнения моделиможно сразу записать в конечно-разностной форме. Они получаются из второго закона Ньютона, представленного в конечно-разностной форме, и закона всемирного тяготения. Разумеется, с точки зрения дифференциального подхода, это есть применение метода Эйлера к дифференциальным уравнениям модели уравнениям.