Бытовые аэрозоли .

Основной задачей аэрозольной упаковки является выдача находящегося в ней под давлением вещества в таком виде, который обеспечивал бы наиболее эффективное воздействие продукта и максимальное удобство.

При помощи аэрозольной упаковки можно распылять жидкие вещества, получать пену из жидких веществ и выдавать наружу пастообразные вещества в виде вязкой струи разнообразной конфигурации.

Распыление жидких веществ, применяющихся в быту, сельском хозяйстве, медицине промышленности и т. д., является наиболее распространенной функцией аэрозольной упаковки. Распыленные жидкости, главным образом, используются для нанесения на поверхность и для образования облака из мелких капель в воздухе.

Аэрозоли в быту – это пятновыводители, средства для чистки и полировки, жидкости для подкрахмаливания и целый ряд других веществ, среди которых жидкости для уничтожения летающих насекомых, удаления неприятного запаха в воздухе, различные дезинфекционные средства и т. д.

Жидкости, предназначенные для распыления при помощи аэрозольной упаковки, находятся в ней под давлением, которое создает пропеллент. В качестве пропеллентов для распыления жидкостей используют в основном сжиженные газы: фторхлорзамещенные углеводороды (фреоны), парафиновые углеводороды (пропан, бутан, изобутан и др.), хлорзамещенные углеводороды (винилхлорид, метилхлорид) и сжатые газы: азот, закись азота, двуокись углерода, последние в основном используют для пищевых продуктов.

Если пропеллентом служит сжиженный газ, то в зависимости от свойств жидкого продукта и пропеллента различают два случая: 1) продукт и пропеллент совмещаются и 2) продукт и пропеллент не совмещаются.

Первый случай относится чаще всего к растворам на основе органических растворителей, совмещающихся с фреонами (реже на основе воды). При совмещении жидкого пропеллента с жидким продуктом в аэрозольной упаковке возникают две фазы (см. рис.):

"А" – газовая (смесь насыщенных паров пропеллента и других летучих жидкостей, включенных в рецептуру), которая занимает свободное пространство в упаковке, и "Б" – жидкая (смесь продукта и жидкого пропеллента). Под давлением газовой фазы "А" жидкая фаза "Б" поднимается по сифонной трубке и через клапанное устройство попадает наружу, где пропеллент, бурно испаряясь, дробит жидкость на мельчайшие частицы "Р". Так как продукт с пропеллентом совмещаются, при хранении расслоения жидкости не происходит.

В случае распыления эмульсий, где активное вещество является дисперсной фазой, пропеллент должен совмещаться со смесью жидких компонентов состава, образующих дисперсионную среду.

(рис)

При хранении аэрозольных упаковок эмульсии расслаиваются, как показано на рисунке слева, причем образуются одна газовая фаза "А" и две жидкие "Б" и "В". Фаза "В" представляет собой активное вещество пли его раствор, а "Б" — смесь пропеллента с остальными жидкими компонентами, не совмещающимися с раствором активного вещества. При взбалтывании упаковки образуется одна жидкая фаза "Б". При этом "Б" служит дисперсионной средой, а "В" – дисперсной фазой. При открытом положении клапана, как и в предыдущем примере, насыщенные пары пропеллента (фаза А) выдавливают эмульсию наружу, где она дробится на мелкие частички "Р".

В обоих случаях газовая фаза, состоящая в основном из насыщенных паров пропеллентов, служит для выдачи жидкой фазы в воздух при открытом положении клапана. Жидкая фаза, состоящая из жидкого продукта и пропеллента, после выдачи из упаковки дробится в воздухе на мелкие частицы, благодаря бурному испарению содержащегося в ней пропеллента.

Размеры распыляемых частиц зависят от количества пропеллента в содержимом баллона, температуры кипения пропеллента, летучести растворителя, температуры окружающей среды, вязкости продукта, конструкции клапана и т. д. Например, характер распыления при 20С в зависимости от количества пропеллента (фреон-12 или смесь фреонов 11 и 12) в жидкой фазе при одной и той же конструкции клапана имеет следующие особенности:

1. При содержании пропеллента в аэрозольной упаковке до 30% (от массы) выдача продукта из упаковки осуществляется в виде струи, что используется только в редких специальных случаях.

2. При содержании пропеллента от 30 до 50 вес. % получается грубое распыление, которое почти не применяется.

3. Составы, содержащие от 50 до 60 вес. % пропеллента, употребляются для распыления жидкостей, предназначенных для нанесения на поверхности, например, лакокрасочных материалов (эмали, лаки и краски), пятновыводителей, средств для чистки и полировки, средств для подкрахмаливания и т. д.

4. Составы, содержащие от 70 до 90 вес. % пропеллента, используются для распыления жидкостей с целью образования облака из мельчайших капель, которое способно довольно долго удерживаться в воздухе.

Такие составы используются для распыления средств уничтожения летающих насекомых; освежителей воздуха, удаляющих неприятный запах в помещениях; различных дезинфекционных средств и т. д.

Внутреннее давление в упаковке не влияет непосредственно на размер частиц, так как оно определяется не количеством сжиженного газа в баллоне, а давлением его насыщенного пара, которое остается постоянным, пока не будет израсходована последняя капля пропеллента. От внутреннего давления зависит в некоторой степени конус распыления и режим расхода содержимого.

Температура окружающей среды влияет на распыление следующим образом.

Во-первых, давление насыщенного пара пропеллента находится в прямой зависимости от температуры, т. е. при понижении температуры - понижается, при повышении - повышается. Во-вторых, растворители улетучиваются быстрее при повышенных температурах, чем при низких. В-третьих, если используются вещества, вязкость которых сильно колеблется с изменением температуры, тогда и размеры образующихся частиц также будут зависеть от изменений температуры.

Иногда при повышении температуры содержимое баллона расслаивается. Это явление исчезает при повышении температуры. Летучесть растворителей также влияет на размеры частиц.

Чем более легколетучи растворители, тем дисперсность распыления выше, и наоборот. Конструкция используемых клапанов также определяет дисперсность струи.

Продукт и пропеллент несовместимы.

(рис)

В качестве пропеллентов в таких системах применяются сжиженные пропан, бутан, изобутан и другие парафиновые углеводороды. Водный раствор и жидкий пропеллент образуют две отдельные жидкие фазы (см. рис.), где вода образует нижний слой "В", а парафиновые углеводороды (плотностью 0,5 – 0,6) – верхний слой "Б". Пары пропеллентов образуют газовую фазу "А".

Такие аэрозольные упаковки перед употреблением не разрешается взбалтывать, т.к. жидкий пропеллент здесь служит только для снабжения парами газовой фазы. Последняя обеспечивает соответствующее давление в упаковке. В отличие от предыдущего случая, здесь характер распыления зависит от внутреннего давления.

Пропеллент, не совмещенный с водным раствором, в самом процессе дробления жидкости в воздухе не участвует. Для этой цели применяются специальные конструкции распылительных головок, которые механически дробят струю на мелкие частицы "Р". Характер распыления зависит от силы подачи продукта в головку.

Конкретным примером распыления водных растворов с помощью парафиновых углеводородов является работа аэрозольных упаковок, содержащих средства для подкрахмаливания белья. Крахмал в водном растворе распыляется при помощи смеси пропана и бутана.

 

Получение пен

Аэрозольные упаковки для выдачи жидкости в виде пены используются в основном в быту, медицине, ветеринарии и косметике. Жидкости, которые при выдаче из упаковки образуют пену, являются водными растворами активного вещества и пенообразователя. Так как пропеллент в этом случае не должен совмещаться с раствором, в подобных составах употребляют фреоны, а также парафиновые углеводороды. Они образуют в данном случае эмульсии, в которых дисперсионной средой является водный раствор, а дисперсной фазой — фреон. Количество пропеллента не превышает 20 вес. %. При хранении эмульсия может расслаиваться, поэтому перед употреблением необходимо аэрозольную упаковку взбалтывать. После попадания эмульсии в воздух, фреон начинает испаряться и пузырьки газа, находящиеся в жидком продукте, постепенно увеличиваясь в объеме, образуют пену, т. е. сравнительно грубую, высококонцентрированную дисперсию паров пропеллента в жидком продукте.

Структура пены зависит, во-первых, от состава, свойств и соотношений растворенных в воде веществ, во-вторых, от соотношения водного раствора и пропеллента и, в-третьих, от давления насыщенных паров последнего. При одинаковом количестве пропеллентов наиболее жесткая упругая пена получается там, где выше всего давление паров.

Пены могут быть устойчивые и неустойчивые. Для получения устойчивых пен применяют стабилизаторы. Прочность и продолжительность существования пены зависит от природы и количества присутствующего пенообразователя, концентрирующегося в результате адсорбции на межфазной поверхности. К типичным пенообразователям для водных пен принадлежат поверхностно-активные вещества, синтезированные на основе спиртов и жирных кислот, а также мыла и мылоподобные вещества, белки и т. д. Для стабилизации пен употребляются различные стабилизаторы. Со временем пленки жидкости между пузырьками пены утончаются вследствие стекания жидкости, пузырьки лопаются, пары пропеллента улетучиваются, и вместо пены остается одна жидкая фаза — раствор пенообразователя в воде.

Выдача продукта в виде пены из аэрозольной упаковки осуществляется при помощи специальных конструкций распылительных головок.

 

Пасты

 

Пасты, т. е. густые эмульсии, при выдаче из аэрозольных упаковок приобретают форму густых лент различных конфигураций в зависимости от конструкции сопла распылительной головки. В качество пропеллента здесь применяют сжатые газы, например, азот, закись азота, углекислый газ и т. д. Растворимость этих газов в пастах незначительна, поэтому сжатые газы служат только для выдачи паст из упаковки, при этом с продуктом не происходит никаких превращений, и в упаковке имеется двухфазная система. Аэрозольные упаковки пастообразных продуктов используются в быту, парфюмерии, медицине, но чаще всего их применяют для пищевых продуктов.

Основные области применения аэрозольных составов

Как уже было сказано, области применения аэрозолей весьма обширны – от парфюмерии, косметики и медицины до средств борьбы с насекомыми. Поэтому в зависимости от направления применения конечного продукта, в одних случаях предъявляются одни требования к пропелленту и его содержанию в составе, в других – совершенно другие. В нижеследующей таблице представлены данные о сферах использования конечных продуктов, типах пропеллентов и их содержании в аэрозольной композиции.

(таблица )Направления использования пропеллентов и их содержание в аэрозольных композициях:

Естественно, во всех тех областях, где применяются углеводородные пропелленты, могут применяться и находят ограниченное применение хладоны. Естественно, по понятным причинам пропан-бутановые смеси не применяются в пожаротушении, ограниченно применяются в медицине и в изготовлении пищевых продуктов. В пожаротушении используемые хладоны являются не только и не столько пропеллентами, сколько компонентами пожаротушащего состава. Пропан-бутан или ДМЭ являются далеко не самыми подходящими компонентами для пожаротушения.

В медицинских аэрозолях углеводородные пропелленты не находят широкого применения в силу их возможного токсичного действия на организм человека. По этой же причине они не используются в пищевых продуктах.

Более того, поставщики озонобезопасных хладоновых пропеллентов и производители смесей из них выражают точку зрения, что использование пропан-бутановых пропеллентов в косметических аэрозолях может оказывать негативное влияние на организм человека. В связи с этим справедливости ради представим основные марки хладонов, которые использовались ранее и находят ограниченное использование в настоящее время в качестве пропеллентов. Некоторые из них запрещены к производству и потреблению.

Помимо хладонов часто в качестве пропеллента используется диметиловый эфир, азот и оксид азота.

 

В 1974 г. М. Молина и Ф. Роуленд из Калифорнийского университета в Ирвине показали, что хлорфторуглероды (ХФУ) могут вызывать разрушение озона. Начиная с этого времени, так называемая хлорфторуглеродная проблема, стала одной из основных в исследованиях по загрязнению атмосферы. Хлорфторуглероды уже более 60 лет используются как хладагенты в холодильниках и кондиционерах, пропелленты для аэрозольных смесей, пенообразующие агенты в огнетушителях, очистители для электронных приборов, при химической чистке одежды, при производстве пенопластов.

Когда-то они рассматривались как идеальные для практического применения химические вещества, поскольку они очень стабильны и неактивны, а значит, не токсичны. Как это ни парадоксально, но именно инертность этих соединений делает их опасными для атмосферного озона. ХФУ не распадаются быстро в тропосфере (нижнем слое атмосферы, который простирается от поверхности земли до высоты 10 км), как это происходит, например, с большей частью окислов азота, и, в конце концов, проникают в стратосферу, верхняя граница которой располагается на высоте около 50 км. Когда молекулы ХФУ поднимаются до высоты примерно 25 км, где концентрация озона максимальна, они подвергаются интенсивному воздействию ультрафиолетового излучения, которое не проникает на меньшие высоты из-за экранирующего действия озона. Ультрафиолет разрушает устойчивые в обычных условиях молекулы ХФУ, которые распадаются на компоненты, обладающие высокой реакционной способностью, в частности атомный хлор. Таким образом, ХФУ переносит хлор с поверхности земли через тропосферу и нижние слои атмосферы, где менее инертные соединения хлора разрушаются, в стратосферу, к слою с наибольшей концентрацией озона. Очень важно, что хлор при разрушении озона действует подобно катализатору: в ходе химического процесса его количество не уменьшается. Вследствие этого один атом хлора может разрушить до 100 000 молекул озона, прежде чем будет дезактивирован или вернется в тропосферу. Сейчас выброс ХФУ в атмосферу исчисляется миллионами тонн, но следует заметить, что даже в гипотетическом случае полного прекращения производства и использования ХФУ немедленного результата достичь не удастся: действие уже попавших в атмосферу ХФУ будет продолжаться несколько десятилетий. Считается, что время жизни в атмосфере для двух наиболее широко используемых ХФУ фреон-11 (CFCl3) и фреон-12 (CF2Cl2) составляет 75 и 100 лет соответственно.

Оксиды азота способны разрушать озон, однако, они могут реагировать и с хлором. Например:

O3+Cl=ClO+O2

ClO+NO=NO2+Cl

NO2=NO+O

O2+O=O3

в ходе этой реакции содержание озона не меняется. Более важной является другая реакция:

ClO+NO2=ClONO2

образующийся в ее ходе хлористый нитрозил является так называемым резервуаром хлора. Содержащийся в нем хлор неактивен и не может вступить в реакцию с озоном. В конце концов, такая молекула-резервуар может поглотить фотон или вступить в реакцию с какой-нибудь другой молекулой и высвободить хлор, но она также может покинуть стратосферу. Расчеты показывают, что если бы в стратосфере отсутствовали оксиды азота, то разрушение озона шло бы намного быстрее. Другим важным резервуаром хлора является хлористый водород HCl, образующийся при реакции атомарного хлора и метана СH4.

Под давлением этих аргументов многие страны начали принимать меры направленные на сокращение производства и использования ХФУ. С 1978 г. в США было запрещено использование ХФУ в аэрозолях. К сожалению, использование ХФУ в других областях ограничено не было. В сентябре 1987 г. 23 ведущих страны мира подписали в Монреале конвенцию, обязывающую их снизить потребление ХФУ. Согласно достигнутой договоренности развитые страны должны к 1999 г. снизить потребление ХФУ до половины уровня 1986 г. Для использования в качестве пропеллента в аэрозолях уже найден неплохой заменитель ХФУ - пропанобутановая смесь. По физическим параметрам она практически не уступает фреонам, но, в отличие от них, огнеопасна. Тем не менее, такие аэрозоли уже производятся во многих странах, в том числе и в России. Сложнее обстоит дело с холодильными установками - вторым по величине потребителем фреонов. Дело в том, что из-за полярности молекулы ХФУ имеют высокую теплоту испарения, что очень важно для рабочего тела в холодильниках и кондиционерах. Лучшим известным на сегодня заменителем фреонов является аммиак, но он токсичен и все же уступает ХФУ по физическим параметрам. Неплохие результаты получены для полностью фторированных углеводородов. Во многих странах ведутся разработки новых заменителей и уже достигнуты неплохие практические результаты, но полностью эта проблема еще не решена.

Использование фреонов продолжается и пока далеко даже до стабилизации уровня ХФУ в атмосфере. Так, по данным сети Глобального мониторинга изменений климата, в фоновых условиях - на берегах Тихого и Атлантического океанов и на островах, вдали от промышленных и густонаселенных районов - концентрация фреонов -11 и -12 в настоящее время растет со скоростью 5-9% в год. Содержание в стратосфере фотохимические активных соединений хлора в настоящее время в 2-3 раза выше по сравнению с уровнем 50-х годов, до начала быстрого производства фреонов.

Вместе с тем, ранние прогнозы, предсказывающие, например, что при сохранении современного уровня выброса ХФУ, к середине XXI в. содержание озона в стратосфере может упасть вдвое, возможно были слишком пессимистичны. Во-первых, дыра над Антарктидой во многом является следствием метеорологических процессов. Образование озона возможно только при наличии ультрафиолета и во время полярной ночи не идет. Зимой над Антарктикой образуется устойчивый вихрь, препятствующий притоку богатого озоном воздуха со средних широта. Поэтому к весне даже небольшое количество активного хлора способно нанести серьезный ущерб озонному слою. Такой вихрь практически отсутствует над Арктикой, поэтому в северном полушарии падение концентрации озона значительно меньше. Многие исследователи считают, что на процесс разрушения озона оказывают влияние полярные стратосферные облака. Эти высотные облака, которые гораздо чаще наблюдаются над Антарктикой, чем над Арктикой, образуются зимой, когда при отсутствии солнечного света и в условиях метеорологической изоляции Антарктиды температура в стратосфере падает ниже -80°. Можно предположить, что соединения азота конденсируются, замерзают и остаются связанными с облачными частицами и поэтому лишаются возможности вступить в реакцию с хлором. Возможно также, что облачные частицы способны катализировать распад озона и резервуаров хлора. Все это говорит о том, что ХФУ способны вызвать заметное понижение концентрации озона только в специфических атмосферных условиях Антарктиды, а для заметного эффекта в средних широтах, концентрация активного хлора должна быть намного выше. Во-вторых, при разрушении озонного слоя жесткий ультрафиолет начнет проникать глубже в атмосферу. Но это означает, что образование озона будет происходить по-прежнему, но только немного ниже, в области с большим содержанием кислорода. Правда, в этом случае озонный слой будет в большей степени подвержен действию атмосферной циркуляции.

Хотя первые мрачные оценки были пересмотрены, это ни в коем случае не означает, что проблемы нет. Скорее, что стало ясно нет серьезной немедленной опасности. Даже наиболее оптимистичные оценки предсказывают при современном уровне выброса ХФУ в атмосферу серьезные биосферные нарушения во второй половине XXI в., поэтому сокращать использование ХФУ по-прежнему необходимо.

Возможности воздействия человека на природу постоянно растут и уже достигли такого уровня, когда возможно нанести биосфере непоправимый ущерб. Уже не в первый раз вещество, которое долгое время считалось совершенно безобидным, оказывается на самом деле крайне опасным. Лет двадцать назад вряд ли кто-нибудь мог предположить, что обычный аэрозольный баллончик может представлять серьезную угрозу для планеты в целом. К несчастью, далеко не всегда удается вовремя предсказать, как то или иное соединение будет воздействовать на биосферу. Однако в случае с ХФУ такая возможность была: все химические реакции, описывающие процесс разрушения озона ХФУ крайне просты и известны довольно давно. Но даже после того, как проблема ХФУ была в 1974 г. сформулирована, единственной страной, принявшей какие-либо меры по сокращению производства ХФУ были США и меры эти были совершенно недостаточны. Потребовалась достаточно серьезная демонстрация опасности ХФУ для того, чтобы были приняты серьезные меры в мировом масштабе.

Следует заметить, что даже после обнаружения озонной дыры, ратифицирование Монреальской конвенции одно время находилось под угрозой. Быть может, проблема ХФУ научит с большим вниманием и опаской относиться ко всем веществам, попадающим в биосферу в результате деятельности человечества.