Движение энергии в биосфере

 

По словам Ю.Одума, “экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы”.

Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в круговоротах веществ. В предыдущем разделе были рассмотрены глобальные круговороты веществ, охватывающие всю биосферу в целом. Кроме того, существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности веществ, аналогичных биогеохимическим циклам биосферы. То есть внутрисистемный круговорот веществ - это и есть способ аккумуляции энергии в системе.

Движение энергии в биосфере существенно отличается от движения вещества. Поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество увеличивает качество части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но ее нельзя использовать вторично.

Принципиальная невозможность утилизации тепловой энергии наряду с прогрессирующим ростом количества энергии, высвобождаемого человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т.п.) есть один из важнейших факторов глобального экологического кризиса.

1.7.1. Основные закономерности движения энергии

Понятие энергии определяется как способность совершать работу. Впервые наиболее полно понятие энергии было исследовано в термодинамике, что отражено в формулировке двух основополагающих законов, описывающих свойства энергии:

1) первый закон термодинамики (принцип сохранения энергии) - энергия может переходить из одной формы в другую, но она никогда не исчезает и не создается заново;

2) второй закон термодинамики (принцип роста энтропии) - все реальные процессы превращения энергии сопровождаются ростом энтропии, то есть переходом энергии в более рассеянное состояние. Потери энергии в виде недоступного для использования тепла всегда приводят к невозможности 100 %-го перехода одного вида энергии в другой.

Энтропия, или дословно “способность к превращению”, есть величина, определяющая качество и концентрацию энергии S=Q/T.

 

1.7.2. Физический смысл энтропии

 

Известно, что во всех естественных процессах теплообмена тепло передается только от тела с большей температурой к телу с меньшей температурой и никогда наоборот (невозможно смешать в одном объеме горячую воду и холодную, а затем разделить в разные объемы получившуюся в результате смешивания теплую воду снова на горячую и холодную).

 

 

1.

 

 

 

 

2.

 

 

|dS1| < |dS2|

Рис. 1.19. Возрастание суммарной энтропии системы в процессе теплопередачи

 

То есть если от тела 1 с температурой Т1 и энтропией S1=Q1/T1 отводится к телу 2 с температурой Т212) и энтропией S2=Q2/T2 некоторое количество теплоты dQ, достаточно малое, чтобы температуры обоих тел не уменьшились значительно, то энтропия тела 1 изменится (уменьшится) на величину dS1=dQ/T1 (здесь dQ<0, следовательно, dS1<0), а энтропия тела 2 изменится (увеличится) на величину dS2=dQ/T2 (здесь dQ>0, следовательно, dS2>0), причем так как Т12, то по абсолютной величине |dS1| < |dS2|, поэтому общая энтропия двух тел S=S1+dS1+S2+dS2=S1-|dS1|+S2+|dS2| > S1+S2, то есть в процессе теплопередачи суммарная энтропия двух тел возрастает и никогда не убывает (рис. 1.19).

Это и есть формулировка второго закона термодинамики. То есть энтропия - это величина, характеризующая направление естественных процессов теплопередачи и вообще любых процессов преобразования энергии.

В более широком смысле под энтропией понимают меру качества, то есть меру концентрации и упорядочения энергии. Так тепловая энергия с большей температурой обладает меньшей энтропией S=Q/T, то есть большим качеством, чем такое же количество тепла при меньшей температуре. Поэтому по мере понижения температуры рабочего тела, например, пара, до температуры окружающей среды можно попутно превратить часть тепловой энергии в механическую работу (тепловая машина).

Чем больше качество энергии, то есть, чем больше превышение температуры пара над температурой окружающей среды, тем большее количество работы можно получить. Разные виды энергии обладают разным качеством.

 

1.7.3. Процессы преобразования энергии в живых организмах

 

Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма DSi>0. Чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию DSe<0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Обычно в этих реакциях разрушаются структуры более сложных молекул, например, молекул белка, жиров или углеводов, получаемых с пищей. Затем эти продукты распада удаляются из организма. Себе организм оставляет разницу энтропии продуктов реакции и энтропии исходных компонентов DSe=Sпрод-Sисх<0. Например, глюкоза окисляется в организме, образуя двуокись углерода и воду (экзотермическая реакция). Продукты реакции, двуокись углерода и вода, удаляются из организма. Высвобожденная в процессе окисления энергия обеспечивает протекание всех физиологических процессов, двигательных функций. Эту часть энергии называют тратами на дыхание (метаболизм). Участвуя в процессах дыхания энергия постепенно полностью переходит в тепло, которое удаляется из организма в окружающую среду. На дыхание тратится не вся свободная энергия, полученная в процессе окисления. Часть энергии используется на организацию эндотермических реакций синтеза необходимых белков, нуклеиновых кислот, т.е. связывается в сложных молекулярных структурах, идет на строительство и “ремонт” организма, то есть на упорядочение внутренней структуры. Эта энергия, накопленная в веществе организма, называется продукцией. Некоторая доля пищи не усваивается организмом, следовательно из нее не высвобождается энергия. Эта энергия выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

1.7.4. Трофическая структура экосистем

 

Движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния тепла, которое сначала утилизируется в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучается в космическое пространство (в инфракрасной части электромагнитного спектра). Основная функция экосистем – поддержание круговорота веществ в биосфере – базируется на пищевых взаимоотношениях.

Ввиду наличия в своей структуре сложномолекулярных соединений, живой организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Можно проследить бесчисленные пути движения вещества в экосистеме, при которых один организм поедается другим и т.д. (трава – корова – человек; злаки – насекомые – лягушка – змея - орел). Ряд таких звеньев называется пищевой или трофической цепью (от греческого слова трофе - питание), в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими (рис. 1.20). Различные уровни этой цепи, т.е. место организма в трофической цепи в зависимости от способа питания, называют трофическими уровнями. Т.е. пищевая (трофическая) цепь – это взаимоотношения между видами различных трофических уровней. Объединение множества цепей питания, их пересечение составляют трофические сети.

Организмы, стоящие на каждом трофическом уровне, приспособлены природой для потребления определенного вида пищи, в качестве которой выступают организмы предыдущего трофического уровня (или нескольких предыдущих уровней).

Трофические цепи можно разделить на два основных типа: пастбищную цепь и детритную цепь.

1.7.4.1. Пастбищная цепь

 

На вершине пастбищной цепи стоят зеленые растения. Они не могут высвобождать энергию путем разрушения органики с предыдущего трофического уровня, поэтому единственным источником энергии для синтеза биоорганики для них является солнечный свет.

В качестве строительного материала, то есть исходных компонентов для синтеза, используются простейшие минеральные и органические вещества, рассеянные в почве и в воздухе. К наиболее важным компонентам относится углекислый газ, являющийся продуктом жизнедеятельности всех организмов планеты. Именно здесь происходит возвращение в круговорот биологического углерода. Так как зеленые растения “никого не едят” и все необходимое для их жизни синтезируют сами с использованием энергии солнца, их называют автотрофами (“самопитающимися”).

 


Рис. 1.20. Трофическая структура экосистемы:

- поток энергии

- поток вещества

 

 

Все остальные уровни трофической цепи существуют за счет энергии, накопленной в органическом веществе зеленых растений. Поэтому по отношению к трофической цепи растения называют продуцентами, то есть создающими первичную продукцию. Организмы на всех остальных уровнях трофической цепи называются консументами (потребителями) первого, второго и т.д. порядка в зависимости от занимаемого ими трофического уровня. Первичные консументы питаются непосредственно продуцентами. Вторичные - первичными консументами, и т.д. Например, человек, питающийся овощами, относится к первичным консументам. Человек, который ест говядину – вторичный консумент.

Так как эти организмы не могут сами синтезировать органическое вещество и вынуждены питаться другими организмами, их называют гетеротрофами (питающийся другими).

На втором уровне пастбищной цепи стоят обычно фитофаги, то есть животные, питающиеся растениями, в частности травоядные. Третий и более высокий уровни занимают хищники или зоофаги (питающиеся животными). Иногда эта цепочка может быть достаточно длинной, особенно в водоемах.

 

1.7.4.2. Детритная цепь

Любая пастбищная цепь переходит в детритную цепь. Термин детрит означает “продукт распада”. В экологии детритом называют органическое вещество, вовлеченное в процесс разложения.

В отличие от пастбищной цепи размеры организмов при движении вдоль пищевой цепи не возрастают, а, наоборот, уменьшаются. Уровень животных-падальщиков можно считать началом детритной цепи, а на следующем уровне могут стоять насекомые-могильщики. Всех консументов, участвующих в процессе разложения детрита, называют детритофагами. Но самыми типичными представителями детритной цепи являются грибы и микроорганизмы. Этих консументов выделяют в особую группу – редуценты (возвращающие). Они питаются мертвым органическим веществом и при этом разлагают его до простейших веществ и биогенов (минеральных компонентов). Затем эти вещества в растворенном виде потребляются корнями зеленых растений в вершине пастбищной цепи, начиная тем самым новый круг движения вещества.

Пастбищная и детритная цепи в разных экосистемах присутствуют по-разному. Например, в лесу лишь небольшая часть зелени поступает в пищу консументам. Большая часть отмерших растений и их фрагментов поступает непосредственно к редуцентам. То есть лес считается экосистемой с преобладанием детритных цепей. В экосистеме гниющего пня пастбищная цепь вообще отсутствует. В то же время, например, в экосистемах поверхности моря практически все продуценты, представленные фитопланктоном, потребляются животными, а их трупы опускаются на дно, то есть уходят из данной экосистемы. В таких экосистемах, как говорят, преобладают пастбищные пищевые цепи, или цепи выедания.

Но любая экосистема с необходимостью включает в себя представителей всех трех принципиальных экологических групп организмов – продуцентов, консументов и редуцентов.

 

1.7.4.3. Роль консументов в экосистемах

Консументы являются не просто потребителями органического вещества, они выполняют важные функции в экосистеме: возвращают вещество в круговорот, увеличивают скорость движения вещества и энергии и их количество в экосистеме, являются основными звеньями механизмов гомеостаза экосистем, т.е. участвуют в процессах саморегуляции экосистемы, а значит, обеспечивают ее устойчивость.

 

1.7.5. Правила 1 % и 10 %

С одного трофического уровня на другой передается не вся энергия данного уровня, а только та, которая накапливается в структуре организмов данного уровня. Основная часть энергии, усвоенной консументами с пищей, тратится на их жизнеобеспечение. В сумме с неусвоенной пищей (экскременты) это составляет в среднем порядка 90 % от потребленной энергии.

Следовательно, энергия, накопленная в структурах организмов, а значит, передаваемая на следующий трофический уровень, в среднем составляет около 10 % от энергии, потребленной с пищей. Эта закономерность называется “правилом десяти процентов” (правило Линдемана).

Фотоактивная радиация, используемая при фотосинтезе, составляет порядка 40 % от поступившей солнечной радиации. Из нее растения связывают не более 0,5 - 1% энергии. Только эта энергия, т.е. 1 % от дошедшей до Земли энергии солнца, накапливается в органическом веществе растений, может затем передаваться по пищевым цепям.

Эту закономерность называют “правилом одного процента”: для биосферы в целом доля возможного потребления чистой первичной продукции (на уровне консументов высших порядков) не превышает 1%.

Из правила 1 % следует важный вывод для деятельности человека: увеличение производства энергии до 1 % от солнечной радиации может изменить общепланетарную температуру на 5 - 9 °С с непредсказуемыми последствиями, следовательно, энергия, вырабатываемая человеком не должна превышать 1 % от поступающей на Землю солнечной энергии. В настоящее время объем энергии, вырабатываемой человеком, составляет 1 % от энергии, перерабатываемой в процессе фотосинтеза. Из ограниченности количества поступающей энергии и правила десяти процентов также следует, что все трофические цепи могут иметь ограниченное количество уровней, как правило, не больше 4 - 5. Количество живого вещества на каждом следующем уровне примерно на порядок меньше, чем на предыдущем.

Существует и еще одно следствие, очень важное для человека: с энергетической точки зрения потребление животной продукции, особенно с дальних уровней цепей питания, нецелесообразно. Чем короче цепочка, по которой идет передача энергии, тем меньше потери.

Особенно велики потери энергии при переходе от растений к травоядным животным. Поэтому с точки зрения роста народонаселения планеты энергетически наиболее выгодным является вегетарианство.

При нормальном питании взрослый человек потребляет 80-100 кг мяса в год. При таком рационе уже невозможно обеспечить животной пищей 6 миллиардов людей планеты. При минимальном расходе мяса можно прокормить около 8 миллиардов людей. Переход всех людей на вегетарианство может обеспечить пищей приблизительно 15 миллиардов людей.

1.7.6. Изменение качества и количества энергии

в трофической цепи

При движении вдоль пастбищной пищевой цепи от одного уровня к другому вместе с уменьшением количества живого вещества на каждом уровне увеличивается качество энергии, запасенной в этом веществе.

Для того, чтобы образовать 1 ккал биомассы хищника, требуется около 10000 ккал энергии солнечного света, или 10 ккал биомассы травоядных животных в энергетическом эквиваленте. Соответственно качество энергии, накопленной в биомассе организмов более высокого уровня трофической цепи, т.е. хищников, в 10 раз выше, чем в биомассе организмов предыдущего трофического уровня, т.е. травоядных.

Чтобы получить энергию более высокого качества, требуется пройти цепь превращений энергии. С каждым звеном этой цепи качество энергии будет повышаться, но за счет уменьшения количества энергии, которое удалось сконцентрировать при преобразовании. Например, мы можем получить электроэнергию, сжигая уголь. Но на каждые 500 ккал энергии, выделившейся при сжигании угля, мы сможем получить только 125 ккал электроэнергии. А на формирование 500 ккал угля в свое время было затрачено около 1000000 ккал солнечной энергии. То есть солнечная энергия обладает сравнительно низким качеством. Чтобы солнечный свет выполнял ту же работу, которая производится сейчас углем или нефтью, нужно сконцентрировать ее в 2000 раз. На концентрацию энергии в угле и нефти потребовались миллионы лет. Поэтому непосредственное использование человеком солнечной энергии с небольшими потерями вряд ли возможно.

1.7.7. Особенности энергетических потребностей человека

В настоящее время наиболее мощные управляющие функции в биосфере несет на себе человек. Мы должны стоять в пищевой цепи после всех хищников. Однако мы вовсе не питаемся хищниками (разве что только некоторыми хищными рыбами), а едим мясо в основном растительноядных животных. Кроме того, большую долю в нашем рационе составляет растительная пища. Но тем не менее именно мы наиболее сильно влияем на биосферу.

Особенность человеческой цивилизации в том, что человек постепенно захватывает в природе все большее количество экологических ниш. Мы давно перестали довольствоваться выделенным нам природой местом в трофической системе биосферы.

Мы довольно долго вытесняли хищников, обрекая их почти на поголовное истребление.

Природные редуценты не справляются с антропогенным загрязнением природы, поэтому мы вынуждены осваивать и их трофические уровни. Человек использует огонь для уничтожения мусора, для разрушения отходов используются и более сложные технологии, т.е. в данном случае человечество выступает в роли деструкторов, редуцентов, возвращая вещества в круговорот жизни.

Проводятся активные исследования способов синтеза искусственной пищи, то есть человек претендует и на трофический уровень автотрофов.

Мы ставим себя во все звенья механизмов гомеостаза. Следствием этих процессов является обеднение видового разнообразия жизни на планете.

Если исходить из строения тела, то человек вообще не является хищником. В трофической сети, мы занимаем место растительноядных животных. Почему же наше управляющее воздействие на природу превышает воздействие хищников?

Дело в том, что энергетические потребности человека в большей своей части вынесены за пределы человеческого тела в сферу его производственной деятельности.

Человек так же, как и все другие живые организмы, следует принципу концентрации энергии, который прослеживается в пищевых цепях, но для этого он использует не свой организм, а создаваемые им объекты. Сжигая ископаемое топливо, концентрируя тем самым высвободившуюся тепловую энергию и преобразуя ее в электроэнергию, мы упорядочиваем объекты материального мира, придавая им форму жилых домов, машин, произведений искусства и т.п. Но за все это приходится платить еще большим количеством разрушения в окружающем нас мире, поскольку правило десяти процентов распространяется и на деятельность человека.

Наши потребности не ограничиваются, как у других биологических видов, первичными потребностями – в пище как источнике энергии и вещества для организма, в воздухе и питьевой воде определенного объема и состава и т.д. Наши вторичные (надбиологические) потребности распространяются на месторождения полезных ископаемых, массивы лесов, ландшафты, моря, т.е. практически на всю природную среду планеты. В этом главная особенность энергетических потребностей человека.

 

ª Вопросы для самопроверки

 

1. В чем отличие в процессах движения энергии и вещества в экосистемах ?

2. Сформулируйте 1-й и 2-й закон термодинамики.

3. Что такое энтропия ?

4. Объясните, почему создание упорядоченных структур в живых организмах не противоречит 2-му закону термодинамики.

5. Объясните, почему круговорот энергии в биосфере невозможен.

6. Каким образом используется энергия, поступающая в организм ?

7. Дайте определение трофической цепи и трофического уровня.

8. Какие части трофической цепи вы можете выделить ?

9. Перечислите элементы трофической цепи и назовите их функции.

10. Опишите элементы пастбищной трофической цепи.

11. Приведите пример пастбищной цепи.

12. Опишите элементы детритной трофической цепи.

13. Приведите пример детритной цепи.

14. В чем отличие качества энергии на разных трофических уровнях ?

15. Какая часть энергии солнца идет на образование биомассы продуцентов ?

16. Сформулируйте правило 10 %.

17. Как отличается количество биомассы на разных трофических уровнях ?

18. Какая часть энергии солнца связывается растениями?

19. Приведите пример экосистемы с преобладанием пастбищной, детритной трофических цепей, с отсутствием пастбищной цепи.

20. В чем особенности энергетических потребностей человека ?

21. Почему потребление животной продукции с дальних уровней цепей питания энергетически невыгодно ?

22. Какой процент от энергии, перерабатываемой в процессе фотосинтеза, составляет энергия, вырабатываемая человеком ?

23. Какова последовательность передачи энергии в экосистеме через элементы трофической цепи ?

 

&? Вопросы для самостоятельного изучения

 

1. Что делает биосферу похожей на вечный двигатель ? Какие изменения в ее работу вносит человек ?

2. Почему в живой природе необходимы продуценты, консументы, редуценты ?

3. Что такое энтропия экосистемы и как она изменяется в процессе движения энергии по живым организмам экосистемы ?

4. Почему “безотходное производство” в принципе невозможно ?

5. Какова связь между потоком энергии и потоком элементов питания (вещества) в каждой экосистеме ? В чем различие между потоком энергии и потоком вещества ?