Включение синхронного генератора на параллельную работу
Существуют два способа включения синхронного генератора на параллельную работу с сетью: способ точной синхронизации и способ самосинхронизации (грубой синхронизации).
При включении синхронного генератора на параллельную работу с сетью по способу точной синхронизации стремятся к тому, чтобы при включении не возникало больших бросков тока. Большие толчки тока вызывают большие моменты, действующие как на ротор, так и на статор, и силы, которые могут привести к разрушению обмотки статора.
Для того чтобы исключить броски тока при включении генератора, необходимо выполнить следующие условия:
1) равенство ЭДС генератора Е0 и напряжения сети UC;
2) равенство частот генератора fГ и сети f;
3) ЭДС генератора Е0 и напряжение сети UС должны находиться в противофазе;
4) чередование фаз ЭДС генератора и напряжения сети должно быть одинаковым (для трехфазных генераторов).
Рис. 1. Схема включения однофазного генератора на параллельную работу с сетью (а) и векторная диаграмма для -момента включения, (б). Лампы синхроноскопа включены по схеме на потухание света
На рис. 1, а представлена схема включения однофазного генератора GS на параллельную работу. При включении генератора GS на параллельную работу выполнение первого условия проверяется по вольтметрам, включенным в сеть и на выводы генератора. Равенства E0=UC добиваются путем регулирования тока возбуждения генератора GS.
Остальные условия проверяются с помощью специальных приборов, называемых синхроноскопами. Простейшим синхроноскопом является ламповый. На рис. 1, а показана одна из возможных схем включения лампового синхроноскопа для однофазного синхронного генератора. На этой схеме лампы включаются соответственно между точками А—А' и В—В'.
При отключенном выключателе Q генератор GS работает в режиме холостого хода (E0==UC) и между контактами выключателя действует ЭДС . Если бы скорость подключаемого генератора была постоянной и равной номинальной, то частота индуцируемой ЭДС Е0 равнялась бы частоте сети и векторы E0 и UC вращались бы с одинаковой скоростью, a . В действительности получить строго постоянную скорость генератора не удается и частоты сети и генератора несколько отличаются. Поэтому векторы Е0 и UC будут перемещаться относительно друг друга со скоростью . Вследствие этого будет изменяться от 0 до 2UC, и соответственно этому изменяется напряжение на лампах: они одновременно будут то загораться, то гаснуть.
Наиболее благоприятным моментом для включения генератора в сеть будет момент времени, когда и лампы погаснут. В этом случае оба вектора расположатся, как показано на рис. 1,6, т. е. они будут находиться в противофазе (E0=-UC). Если включение произведено при , то ток у подключенного генератора будет также равен нулю. Включение ламп, показанное на рис. 1, а, называется «включением на потухание». На практике при включении генератора на параллельную работу с сетью регулируют скорость его двигателя и добиваются, чтобы промежутки времени между следующими друг за другом погасаниями ламп были достаточно большими, чтобы успеть включить генератор на параллельную работу.
Для трехфазных генераторов применяются две схемы включения ламп: на потухание (рис. 2, а) и на вращение света (рис. 2, б).
Рассмотрим первую схему (рис. 2, а). Здесь лампы включены между точками А'—А", В'—В" и С'—С", каждая пара которых относится к одной фазе. В момент включения выключателя Q напряжения между этими точками должны быть равны нулю и все три лампы должны погаснуть. При этом напряжение UC и ЭДС Е0 для каждой фазы действуют навстречу друг другу, т. е. они находятся в противофазе, как это показано на векторной диаграмме рис. 3.
Во второй схеме (рис. 2, б) одна из ламп подключается к точкам одной фазы А'—А", а две другие лампы — между точками разных фаз В'—С" и С'—В". В этой схеме до включения выключателя Q лампы будут попеременно загораться и гаснуть. Это будет происходить из-за взаимного перемещения векторов напряжения UC и ЭДС E0 вызванного несовпадением их частот. Включение выключателя Q должно быть произведено, когда одна лампа (между А'-А'') погаснет, а две другие лампы будут гореть с одинаковым накалом (рис.4). Перед включением выключателя Q следует добиться, чтобы вращение света происходило с небольшой скоростью, что достигается регулированием скорости приводного двигателя.
Рис. 2. Схема включения трехфазного синхронного генератора на параллельную работу с сетью. Лампы синхроноскопа включены по схеме на потухание света (а) и на вращение света (б)
Лампы гаснут при напряжениях, равных 30—60 % их номинального напряжения, поэтому, для того чтобы более точно выбрать момент включения выключателя Q как в одной, так и в другой схеме, параллельно лампе 1 между точками А'—А" включают так называемый нулевой вольтметр.
Рис. 3. Векторная диаграмма напряжений сети UС и ЭДС генератора Ег для момента времени включения генератора на параллельную работу с сетью | Рис. 4. Напряжение на лампах синхроноскопа при включении его .на вращение света в момент замыкания выключателя Q (см. рис. 2, б): U2 — напряжение на лампе 2; U3 — напряжение на лампе 3 |
Для мощных генераторов пользуются электромагнитным синхроноскопом, к которому подаются напряжения генератора и сети. Этот прибор работает на принципе вращающегося магнитного поля, и при fГ≠fC его стрелка вращается с частотой fГ-fC в ту или иную сторону в зависимости от того, какая частота больше. При правильном моменте включения стрелка синхроноскопа обращена вертикально верх..
При высоком напряжении приборы синхронизации включаются через трансформаторы напряжения. При этом необходимо позаботиться о том, чтобы фазировка (чередование фаз) этих трансформаторов была правильной.
Синхронизация генераторов является весьма ответственной операцией и требует от эксплуатационного персонала большого внимания. В особенности это важно в случае различных аварий, когда персонал работает в напряженной обстановке. В то же время именно при авариях необходима максимальная оперативность в производстве различных переключений и в синхронизации резервных или отключившихся во время аварий генераторов. Опыт показывает, что наибольшее число ошибочных действий персонала падает как раз на период аварий.
Для исключения ошибок персонала и облегчения его работы пользуются автоматическими синхронизаторами, которые осуществляют автоматическое регулирование UГ и fГ синхронизируемых генераторов в нужных направлениях и при достижении необходимых условий автоматически включают генераторы на параллельную работу. Однако подобные автоматические синхронизаторы также обладают недостатками (сложность, необходимость непрерывного и квалифицированного обслуживания и т. д.). К тому же во время аварий напряжение и частота в системе нередко беспрерывно и быстро меняются и поэтому процесс синхронизации с помощью автоматических синхронизаторов сильно затягивается (до 5—10 мин и даже более), что с точки зрения ликвидации аварии крайне нежелательно.
Для ускорения включения применяют способ самосинхронизации. Сущность метода самосинхронизации заключается в том, что генератор включается в сеть в невозбужденном состоянии (UГ=0) при скорости вращения, близкой к синхронной (допускается отклонение до 2%). При этом отпадает необходимость в точном выравнивании частот, значения и фазы напряжений, благодаря чему процесс синхронизации предельно упрощается и возможность ошибочных действий исключается. После включения невозбужденного генератора в сеть немедленно включается ток возбуждения, и генератор втягивается в синхронизм (т. е. его скорость достигает синхронной).
При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением UС, эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с Е0=UС.Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.).
Рис. 5. Кривые изменения токов турбогенератора мощностью 100 МВт при включении в сеть методом самосинхронизации