Поле корреляции и подходящая линия регрессии
5. Измерение степени тесноты связи и оценка ее существенности используют:
– Линейный коэффициент корреляции – применяют для парной линейной зависимости между двумя количественными признаками:
Его пределы [–1; +1]; чем ближе к 1 по абсолютной величине, тем связь теснее. Знак коэффициента показывает направление связи («+» – прямая связь, «–» – обратная).при равенстве коэффициент нулю, можно говорить об отсутствии связи.
– Коэффициент Фихнера – используют при небольшом объеме исходной информации, его пределы [–1; +1]:
,
– количество совпадений знаков отклонений индивидуальных величин факторного и результативного признаков от их средней арифметической величины.
– Коэффициент ассоциации Д. Юла – для альтернативных признаков:
Таблица 25
Таблица «четырех полей»
Признаки | А (да) | (нет) | Итого |
В (да) | a | b | a+b |
(нет) | c | d | c+d |
Итого | a+c | b+d | n |
.
– Коэффициент контингенции К. Пирсона – для качественных (альтернативных) признаков ([–1; +1]):
.
– Коэффициент взаимной сопряженности К. Пирсона – для альтернативных признаков, принимающих любое число вариантов значений, лежит в пределах [0; +1].
Для коэффициентов взаимной сопряженности составляется таблица 26
Таблица 26
Таблица первичной информации
Признаки | А | B | C | Итого |
D | f11 | f12 | f13 | A1i |
E | f21 | f22 | f23 | A2i |
F | f31 | f32 | f33 | A3i |
Итого | A1j | A2j | A3j | n |
Затем вычисляется показатель средней квадратической сопряженности.
,
где – частоты каждой клетки; – номер строки; – итоговые частоты по строкам; – итоговые частоты по графам.
После чего вычисляются сами коэффициенты:
.
– Коэффициент взаимной сопряженности А.А. Чупрова – при небольшом объеме исходной информации ([0; +1]).
,
где – число групп по столбцам таблицы; – число групп по строкам таблицы.
– Эмпирическое корреляционное отношение – при любой форме зависимости ([0; +1]).
– Коэффициент корреляции рангов Спирмена – когда значения количественных признаков могут быть проранжированны ([–1; +1]);
,
где – разность между величинами рангов признака-фактора и результативного признака; – число показателей (рангов) изучаемого рода.
Оценка существенности проводится по методам:
– t-критерий Стьюдента – при большом объеме выборки.
Находится расчетное значение
где – линейный коэффициент корреляции.
Полученное значение сравнивается с табличным и если , то можно говорить о существенной зависимости между рассматриваемыми признаками;
– метод преобразованной корреляции Фишера – по данным малой выборки (данный метод был рассмотрен в теме «Выборочное наблюдение»).
6. Построение модели связи (уравнения регрессии, параметры которого вычисляются по методу наименьших квадратов).
Уравнение регрессии достаточно хорошо отображает изучаемую взаимосвязь, если отношение средней квадратической ошибки уравнения к среднему уравнению результативного признака не превышает 10-15%.
7. Определение коэффициента эластичности
,
где –коэффициент регрессии при -м факторе. Коэффициент эластичности показывает на сколько процентов в среднем изменяется результативный признак с изменением признака-фактора на 1 %.
Так же для сравнения роли различных факторов можно применить β – коэффициента (показывает на какую часть среднего квадратическо отклонения изменится результативный показатель при изменении соответствующего фактора на величину его среднего квадратического отклонения)
.
Корреляционно-регрессионный анализ измеряет тесноту, направление связи и устанавливает форму связи. Он применим если: все признаки и их совместные распределения подчиняются нормальному закону распределения; дисперсия моделируемого признака в течении всего изучаемого периода оставаться постоянной при изменении величины и значений факторных признаков; отдельные наблюдения являются независимыми. Этапы составления корреляционно-регрессионной модели: логический анализ сущности изучаемого явления и его причинно-следственных связей; установление результативного показателя и факторов, влияющие на его изменение; сбор первичной информации и проверка ее на однородность и нормальность распределения; исключение из массива первичной информации всех аномальных единиц; установление факта наличия корреляционной зависимости между результативным и факторным признаками и определение ее характера и направления; измерение степени тесноты связи и оценка ее существенности; построение модели связи (уравнения регрессии, на основе метода наименьших квадратов); определение того, действительно ли уравнение регрессии достаточно хорошо отображает изучаемую взаимосвязь; определение коэффициента эластичности.