ГЕНЕТИКА ИММУНОГЛОБУЛИНОВ
Гены иммуноглобулинов аутосомны, кодоминантны. Структурное разнообразие иммуноглобулинов определяется последовательностью аминокислот.
В биологии существовал принцип «один ген — одна полипептидная цепь», а также утверждалась неизменность генома в онтогенезе организма. Однако в случае Ig видно, что несколько генов кодируют одну полипептидную цепь.
Иммуноглобулины контролируются тремя семействами генов, расположенными в разных хромосомах. Одно семейство кодирует синтез всех классов тяжелых цепей (Н), другое — синтез легких к-цепей, третье — синтез легких Х-цепей.
У мыши вариабельная область легкой Х-цепи кодируется двумя V-генами, а константная область — четырьмя С-генами (рис. 50). V- и С-гены называются также V- и С-сегментами. Перед каждым С-геном находится короткий отрезок ДНК, который называется J-сегментом. Любой V-ген может соединиться с любой парой J-сегмент — С-ген. Следовательно, легкая Х.-цега> кодируется сегментами'V, J, С. В эмбриональном геноме эти
Рис. 50. Гены Ig мыши (1 — легкая А.-цепь; 2 — легкая к-цепь; 3 — тяжелая цепь; V—ген (сегмент); J—сегмент; D—сегмент; С—геп (сегмент)
сегменты удалены друг от друга, а в зрелых лимфоцитах в результате соматической рекомбинации они сближаются.
Для легкой к-цепи имеется несколько сот V-генов, четыре J-сегмента и один С-ген (см. рис. 50). В зрелом лимфоците Х.-цепь кодируется сегментами V, J и С (по одному из многих сегментов. V и J).
Для тяжелых цепей всех типов существует 100—500 V-генов, 20 D-сегментов, 4 J-сегмента и несколько тесно сцепленных С-генов. В плазматической клетке тяжелая цепь кодируется сегментами V, D, J, С (см. рис. 50).
Сбор генов Ig осуществляется в два этапа. В результате соматической рекомбинации соединяются V- и J-сегменты легкой цепи или V-, D- и J-сегменты тяжелой цепи. Часть V- и J-cer-ментов при этом выбрасывается. Затем происходит транскрипция, образуется пре-иРНК. При сплайсинге про-иРНК (удаляются интроны и соединяются экзоны) вырезаются интроны и V-, J-, С-сегменты располагаются рядом. В цитоплазме происходит трансляция и образуется легкая к-цепь (рис. 51). Такой же процесс осуществляется и при образовании тяжелых цепей Ig. При иммунном ответе предшественники зрелых лимфоцитов сначала образуют филогенетически самый древний IgM, а потом в лимфоцитах происходит переключение на синтез Ig других классов.
Аллотшгы иммуноглобулинов. Это генетически детерминированные варианты белков (в данном случае иммуноглобулинов), по которым особи внутри вида отличаются друг от друга. Алло-типы представляют отдельные варианты генов иммуноглобулинов и обусловливают их генетический полиморфизм. Каждая молекула иммуноглобулина имеет не один, а несколько аллоти-пических детерминант (или аллотипинеских маркеров). Из сель-
Рис. 51. Сборка гена иммуноглобулина из отдельных фрагментов на примере легких к-цепей (но Тонегава, 1985)
скохоэяйственных животных наиболее изучены аллотипы кролика (табл. 35).
35. Аллотипы иммуноглобулинов кролика (по Кульбергу, 1985)
Локус | Детерминанта | Класс Ig | Локализация |
а | al, a2, аЗ | Все классы | V-область к-цепи |
х, у | х32, уЗЗ | To же | To же |
Ь | Ь4, Ь5, Ь6, Ь9 | » | С-область, к-цепи |
с | с7, с21 | » | С-область, А,-цепи |
d | dll, dl2 | IgG | С-область, у-цепи |
(участок «талии» | |||
молекулы Ig) | |||
е | е14, е15 | IgG | С-область, у-цепи (Fc- |
участок молекулы Ig) | |||
f | f69, f70, f71, f72, f73 | IgA | С-область, а-цепи |
g | g74, g75, g76, g77 | IgA | То же |
Локус неизвестен Тоже | Msl, Ms2, Ms4, Ms5, Ms6 n81, n82 | IgM | С-область, ц-цепи Тоже |
Аллотипические детерминанты, указывающие аллотипичёскую группу (локус), обозначают буквой (a, b, e и т. д.), а аллели — цифрой (a1, Ь*, е14 и т. д.)- При написании фенотипа аллотипы разных групп отделяют косой чертой, например а2аЗ/е14е15/Ь5, а генотип обозначают а^е^е15^5.
Имеется еще две группы антигенных детерминант иммуноглобулинов: изотипы и идиотипы.
Изотипы — это антигенная специфичность, общая для всех особей одного вида. Пять классов иммуноглобулинов (А, М, С, Е, D) являются изотипами.
Идиотипы — это антигенные различия между антителами, принадлежащими к одному классу, субклассу и аллотипу у отдельных особей. Идиотипы одной особи определяются клонами клеток, синтезирующими антитела.
В зависимости от числа замен различают простые и сложные (комплексные) аллотипы. Простые аллотипы возникают при замене одной, двух аминокислот, сложные аллотипы — при замене многих аминокислот. Например, комплексные Ь4 и Ъ9 аллотипы константного района к-цепи различаются по 35 % аминокислот.
Гены каждого вида цепи тесно сцеплены, поэтому их аллель-ные варианты наследуются как единое целое, т. е. аллогруппами (гаплотипами, группами сцепления). Например, три группы аллоти-гпов кролика (у, х, а) Ун-области и пять групп аллотипов (л, d, e, f, g) Сн-области наследуются аллогруппами. Ниже показаны алло-группы кролика, унаследованные потомками от отца и матери*.
Известно, что в молекуле иммуноглобулина или только к-цепь, или только Х,-цепь сочетается с любым типом тяжелых цепей. В одной плазматической клетке вырабатываются антитела одной 'Специфичности. В гетерозиготных плазматических клетках работает только один из двух аллельных генов Vh- и Сн-цепей и один •ген из двух легкой цепи — аллельное исключение (рис. 52). Поэтому фенотип клетки может не полностью соответствовать ее генотипу, несмотря на кодоминантное наследование. Однако в связи с наличием большого числа плазматических клеток в организме встречаются все типы антител в соответствии с его генотипом и любые комбинации материнских и отцовских аллотипов.
Разнообразие антител. Одна из главных и интересных проблем иммунологии — это объяснение природы происхождения громадного разнообразия антител. Ведь организмы в течение жизни могут встречаться с десятками тысяч антигенов и должны отличать «чужеродные» агенты от «своих». Но существует ли тогда
Рис. 52. Схема синтеза плазматической клеткой тяжелых и легких целей иммуноглобулина. Гепотип клетки — (tif/dud'2/b\b5, фешггип клетки — о7/?2/** — пример алделыюго исключения; д\ а\ dl\ dl\ *4, Ьь — аллотяпы иммуноглобулина кролика
огромное количество генов антител, передающихся из поколения в поколение?
Установлено, что разнообразие антител может быть обеспечено следующими факторами:
1) наличием ограниченного числа гаметных генов;
2) сборкой и экспрессией генов в соматических клетках из
ограниченного набора зародышевых сегментов;
3) неточностью аппарата сплайсинга РНК, когда соединяются
сегменты V, D и J;
4) соматическими гипермутациями генов антител.
Вам уже известно (см. рис. 50), что набор зародышевых генов для к-, Х-цепей и тяжелой цепи не столь велик: от 2 до 300 V-сегментов, 4 J-сегмента, около 20 D-сегментов и 1—4 С-сег-мента.
Количество вариантов сборки гена иммуноглобулина, например, легкой к-цепи равно произведению чисел V- и J—сегментов. Соединение V-, D- и J-сегментов может произойти более 10 тыс. способами. Таким образом, число вариантов формирования активного центра Ig (паратопа) участками легкой и тяжелой цепи превышает 10 млн.
Разнообразие антител может возникать вследствие нарушения соединения V-, D- и J-сегментов, а также вклинивания лишних нуклеотидов уже не в ДНК, а при сплайсинге про-иРНК. В результате образуется несколько измененная иРНК и при трансляции изменяется последовательность аминокислот в иммуноглобулине.
Значительный источник разнообразия антител — это повышенная частота соматических мутаций в вариабельных доменах, особенно в гипервариабельных районах. Показано, что в V-райо-не Ig происходит три мутации на 30 делений В-лимфоцитов, т. е. на несколько порядков превышает обычную частоту мутаций. Предполагают наличие в В-клетках специальных ферментов, усиливающих темп мутирования.
Таким образом, при наличии различных вариантов сборки зародышевых генов, неточности соединения сегментов, вставок пар нуклеотидов и соматических мутаций может возникнуть более 1 млрд типов антител.