Схемы функциональных элементов.
Функциональный элемент с n упорядоченными входами и одним выходом
.
| |||||
При подаче на выходы любой комбинации двоичных сигналов, на выходе также возникает сигнал.
Каждый вход – аргумент функции.
Выход – булева функция от аргументов.
Из функциональных элементов можно строить по правилам их соединения схемы (логические сети).
Два и более входов можно отождествлять.
Возможные соединения функциональных элементов соответствуют булевым функциям и их суперпозициям.
Полный набор булевых функций, который мы будем использовать для построения логических сетей (схем) в какой-нибудь задаче, мы назовем базисом из функциональных элементов.
Число функциональных переменных считаем сколь угодно большим.
Базис называется полным, если с его помощью можно реализовать любую булеву функцию в виде схемы.
Очевидно, чтобы базис был полным, необходимо и достаточно, чтобы система функций, реализуемых элементами базиса, была полной.
Пример полного базиса.
|
|
Дизъюнктор
- И
|
Чтобы построить минимальную функциональную схему для функции на конъюнкторах, дизъюнкторах и инверторах, которая реализует эту функцию, нужно
1. Найти минимальную ДНФ.
2. Для любой из минимальных ДНФ (их может быть много) попробовать упростить формула с помощью вынесения за скобки общего множителя.
Логические функции двух переменных
Таблица истинности функции двух переменных Y=f(X1,Х2) содержит 4 строки, а число функций двух переменных равно 16.
Мы рассмотрим только несколько основных функций двух переменных.
1. Логическое ИЛИ (логическое сложение, дизъюнкция):
Y= X1 + X2 = X1VX2
Техническая реализация этой функции - два параллельно соединенных ключа:
Таблица истинности логического ИЛИ имеет вид:
Логический элемент ИЛИ обозначается на схемах следующим образом:
2. Логическое И (логическое умножение, конъюнкция, схема совпадений): Y = X1X2 = X1&X2
Техническая реализация этой функции - два последовательно соединенных ключа:
Таблица истинности логического И имеет вид:
Логический элемент И обозначается на схемах следующим образом:
3. Функция стрелка Пирса (ИЛИ-НЕ): Y = NOT(X1+X2)
Таблица истинности функции ИЛИ-НЕ имеет вид:
Логический элемент ИЛИ-НЕ обозначается на схемах следующим образом:
4. Функция штрих Шеффера (И-НЕ): Y = X1|X2 = NOT(X1X2)
Таблица истинности функции И-НЕ имеет вид:
Логический элемент И-НЕ обозначается на схемах следующим образом:
Есть ещё три логические функции двух переменных, имеющие специальные названия: импликация, эквивалентность, неравнозначность (исключающее ИЛИ, сложение по модулю 2). Последние две функции являются взаимно обратными, также как, например, функция И и функция штрих Шеффера.
Элемент памяти - RS-триггер
Триггер - это логическое устройство, способное хранить 1 бит информации. К триггерам относятся устройства, имеющие два устойчивых состояния. Простейший триггер - RS-триггер, образован из двух элементов И-НЕ (или ИЛИ-НЕ). Он позволяет запоминать 1 бит информации, поскольку информация в компьютере представляется в двоичном виде. Его схема приведена ниже.
Действие RS-триггера поясняется в приведенной ниже таблице истинности. S-вход установки (Set), R-вход сброса (Reset).