Й учебный вопрос. Общая характеристика и интерпретация параметров моделей.
В эконометрике к числу динамических относятся не все модели, построенные по временным рядам данных. Термин «динамический» в данном случае характеризует каждый момент времени t в отдельности, а не весь период, для которого строится модель. Эконометрическая модель является динамической, если в данный момент времени t она учитывает значения входящих в нее переменных, относящиеся как к текущему, так и к предыдущим моментам времени, т. е. если эта модель отражает динамику исследуемых переменных в каждый момент времени.
Можно выделить два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значения переменной, за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным и определяется экономическими единицами с учетом информации, которой они располагают в момент (t — 1).
В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии.
При исследовании экономических процессов нередко приходится моделировать ситуации, когда значение результативного признака в текущий момент времени / формируется под воздействием ряда факторов, действовавших в прошлые моменты времени t — 1, t — 2, t — l. Например, на выручку от реализации или прибыль компании текущего периода могут оказывать влияние расходы на рекламу или проведение маркетинговых исследований, сделанные компанией в предшествующие моменты времени. Величину l, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике , а временные ряды самих факторных переменных, сдвинутые на один или более моментов времени, - лаговыми переменными.
Разработка экономической политики как на макро-, так и на микроуровне требует решения обратного типа задач, т. е. задач, определяющих, какое воздействие окажут значения управляемых переменных текущего периода на будущие значения экономических показателей. Например, как повлияют инвестиции в промышленность на валовую добавленную стоимость этой отрасли экономики будущих периодов или как может измениться объем ВВП, произведенного в периоде (t + 1), под воздействием увеличения денежной массы в периоде t?
Эконометрическое моделирование охарактеризованных выше процессов осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида
(7.1)
является примером модели с распределенным лагом.
Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Например, потребление в момент времени t формируется под воздействием дохода текущего и предыдущего периодов, а также объема потребления прошлых периодов, например потребления в период, (t — 1). Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида
(7.2)
относится к моделям авторегрессии.
Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому.
Рассмотрим модель с распределенным лагом в ее общем виде в предположении, что максимальная величина лага конечна:
Эта модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x, то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.
Коэффициент регрессии при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1 ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора х. Этот коэффициент называют краткосрочным мультипликатором.
В момент (t + 1) совокупное воздействие факторной переменной , на результат , составит (b0 + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (b0 + b1 + b2 ) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.
С учетом конечной величины лага можно сказать, что изменение переменной хt в момент t на 1 усл. ед. приведет к общему изменению результата через l моментов времени на (b0 + b1 +…+ bl ) абсолютных единиц. Введем следующее обозначение:
b0 + b1 +…+ bl =b. (7.4)
Величину b называют долгосрочным мультипликатором. Он показывает абсолютное изменение в долгосрочном периоде t + l результата у под влиянием изменения на 1 ед. фактора х.
Предположимj=0:1 (7.5)
Назовем полученные величины относительными коэффициентами модели с распределенным лагом. Если все коэффициенты имеют одинаковые знаки, то для любого j
В этом случае относительные коэффициенты являются весами для соответствующих коэффициентов Каждый из них измеряет долю общего изменения результативного признака в момент времени (t+j)
Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего лага и медианного лага. Средний лаг определяется по формуле средней арифметической взвешенной:
и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании результата на изменение фактора, тогда как высокое его значение говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени. Медианный лаг — это величина лага, для которого
Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.
Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l, чрезвычайно сложно.
Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам.
Во-первых, текущие и лаговые значения независимой беременной, как правило, тесно связаны друг с другом. Тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности факторов.
Во-вторых, при большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков. Это ведет к потере числа степеней свободы в модели.
В-третьих, в моделях с распределенным лагом часто возникает проблема автокорреляции остатков. Вышеуказанные обстоятельства приводят к значительной неопределенности относительно оценок параметров модели, снижению их точности и получению неэффективных оценок. Чистое влияние факторов на результат в таких условиях выявить невозможно. Поэтому на практике параметры моделей с распределенным лагом проводят в предположении определенных ограничений на коэффициенты регрессии и в условиях выбранной структуры лага.
Обратимся теперь к модели авторегрессии. Пусть имеется следующая модель:
(7.7)
Как и в модели с распределенным лагом, b0 в этой модели характеризует краткосрочное изменение у, под воздействием изменения хt на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в моделях авторегрессии несколько иные. К моменту времени (t+ 1) результату изменился под воздействием изменения изучаемого фактора в момент времени t на b0 ед., а yt+1 под воздействием своего изменения в непосредственно предшествующий момент времени — на с1 ед: Таким образом, общее абсолютное изменение результата в момент (t + 1) составит b0с1 ед. Аналогично в момент времени (t+2) абсолютное изменение результата составит b0с12 ед. и т. д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточных мультипликаторов:
7.8)
Учитывая, что практически во все модели авторегрессии вводится так называемое условие стабильности, состоящее в том, что коэффициент регрессии при переменной yt-1 по абсолютной величине меньше единицы |с1| < 1, соотношение (7.8) можно преобразовать следующим образом:
где |с1| < 1. (7.9)
Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.