Линейчатый спектр атома водорода

Спектр излучения атомарного водорода состоит из отдельных спектральных линий, которые располагаются в определенном порядке. В 1885 г. Бальмер установил, что длины волн (или частоты) этих линий могут быть представлены формулой. Действительно, из (7) с учетом (6) для водорода (Z = 1), следует, что

, (8)

где R = 2,07× 1016 с -1 – постоянная Ридберга. Учитывая, что 1/l = v/с = w/2pс и используя (8), найдем

, (9)

где R =1,0974×107 м-1 – называется также постоянной Ридберга.

На рис. 1 изображена схема энергетических уровней атома водорода, рассчитанных согласно (6) при z = 1.

Еn, эВ

 

0 n = ¥

 

-0,85

n = 4

n = 3
-1,51

 

СП

 

       
 
-3,4
   
n = 2
 

 


СБ

 

       
   
 
-13,6
 

 


СЛ

 

При переходе электрона с более высоких энергетических уровней на уровень n=1 возникает ультрафиолетовое излучение или излучение серии Лаймана (СЛ). Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ). При переходе электронов с более высоких уровней на уровень n = 3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.

Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m=1 – для серии Лаймана, при m=2 – для серии Бальмера и при m = 3 – для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду:

, эВ (10)

Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.) были сделаны важные открытия, например, в области атомной спектроскопии. Однако в теории Бора обнаружились существенные недостатки, например, с ее помощью невозможно создать теорию более сложных, чем атом водорода, атомов. Поэтому становилось очевидным, что теория Бора представляет собой переходной этап на пути создания последовательной теории атомных и ядерных явлений. Такой последовательной теорией явилась квантовая (волновая) механика.

11.4 Атом водорода согласно квантовой механики. Квантовые числа электрона в атоме

Результаты, полученные согласно теории Бора в решении задачи об энергетических уровнях электрона в водородоподобных атомах, получены в квантовой механике без привлечения постулатов Бора. Покажем это.

Состояние электрона в водородоподобном атоме описывается некоторой волновой функцией y, удовлетворяющей стационарному уравнению Шредингера [см.(9.22)]. Учитывая, что потенциальная энергия электрона

(11)

где r – расстояние между электроном и ядром, получим уравнение Шредингера в виде

(12)

Целесообразно воспользоваться сферической системой координат r, q, j и искать решение этого уравнения в виде следующих собственных функций

(13)

где n, l, m – целочисленные параметры собственных функций. При этом n – называют главным квантовым числом, l – орбитальным (азимутальным) и m – магнитным квантовым числом.

Доказывается, что уравнение (12) имеет решение только при дискретных отрицательных значениях энергии

, (14)

где n = 1, 2, 3,... – главные квантовые числа.

Сравнение с выражением (6) показывает, что квантовая механика приводит к таким же значениям энергии, какие получились и в теории Бора. Однако в квантовой механике эти значения получаются как следствие основных положений этой науки.

Подставив в (14 ) Z = 1 и приняв n = 1, получим значение энергии основного состояния (т.е. состояния с наименьшей энергией) атома водорода

эВ. (15)

Из решения (13) уравнения Шредингера (12) также следует, что момент импульса электрона в атоме квантуется по формуле

(16)

где l= 0, 1, 2, ... (n-1) – орбитальное (азимутальное) квантовое число.

Проекция момента импульса L электрона на направление Z магнитного поля может принимать лишь целочисленные значения, кратные (пространственное квантование) т.е.

(17)

m – называют магнитным квантовым числом. При данном магнитное квантовое число может принимать различных значений.

  Lz              
Опыт Штерна и Герлаха, а также более ранние эксперименты привели Уленбека и Гаудсмита к гипотезе существования у электрона собственного момента импульса, который был назван спин (spin – верчение).

Lz     -  
       
   
 
 

 

 


l=1 l=2