Общепринятой классификацией компьютерных сетей является их разделение на локальные (LAN - Local Area Network), глобальные (WAN - World Area Network) и корпоративные сети.

 

Простейшая сеть образуется соединением двух рядом расположенных компьютеров через последовательные (СОМ) или параллельные (LPT) порты с помощью специальных кабелей. Такое соединение часто применяют при подключении ноутбука к другому компьютеру с целью передачи данных. В последние годы в практику входит использование инфракрасных портов для соединения компьютеров в пределах прямой видимости (без применения кабелей).

 

Локальная вычислительная сеть (ЛВС) представляет собой распределенную на небольшой территории вычислительную систему, не требующую специальных устройств (за исключением сетевых карт и в более сложных конфигурациях - концентраторов) для передачи данных. В связи с ослаблением сигналов в соединяющих компьютеры электрических кабелях Протяженность всей системы не должна превышать нескольких километров, что ограничивает ее распространение рядом близко расположенных зданий. Пример(сеть в классном кабинете)

 

Глобальная компьютерная сеть (ГКС) связывает информационные ресурсы компьютеров, находящихся на любом удалении, что предполагает использование различных специализированных устройств и каналов связи для высокоскоростной и надежной передачи данных. Общедоступные глобальные сети ориентированы на обслуживание любых пользователей.(Глобальная может включать в себя локальную сети, глобальная на большие расстояния)

 

Корпоративная компьютерная сеть (ККС) создается для обеспечения деятельности различного рода корпоративных структур (например, банков со своими филиалами), имеющих территориально удаленные подразделения. В общем случае корпоративная сеть является объединением ряда сетей, в каждой из которых могут быть использованы различные технические решения. По функциональному назначению корпоративная сеть ближе к локальным сетям, по особенностям используемых для передачи данных технических решений и характеру размещения информационных ресурсов — к глобальным сетям. В отличие от глобальных сетей как локальные, так и корпоративные сети являются, как правило, сетями закрытого типа, политика доступа в которые определяется их владельцами (как правило, для свободного доступа открыты небольшие сегменты сетей, ориентированные на рекламу, взаимодействие с клиентами и др.).

ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ, ИХ ИЕРАРХИЯ, АРХИТЕКТУРА

 

системный подход, предполагающий подчинение всех принимаемых решений общей цели создания компьютерной системы. При этом выбор архитектуры сети, организация каналов передачи данных, характер территориального размещения баз данных, особенности доступа пользователей к ресурсам сети, функциональные возможности аппаратного и программного обеспечения должны соответствовать назначению сети, и в пределе оптимизировать принятые при ее проектировании критерии качества

 

реализация архитектуры открытых систем, ориентированной на возможность расширения (изменения), в том числе, через взаимодействие с другими сетями на основе принятых стандартов. Открытый характер построения сети позволяет осуществить ее декомпозицию в виде относительно самостоятельных подсистем меньшего масштаба и модулей, в пределах которых при проектировании могут быть использованы индивидуальные решения. Актуальность данного принципа подчеркивается значением модели взаимодействия открытых систем OSI как общепризнанного стандарта построения сетей. Открытость системы является основой для ее адаптации (как правило, непрерывной) к изменяющимся условиям, включая решение вопросов ее последующего масштабирования;

 

использование унифицированных решений. Широкая номенклатура современных серийно выпускаемых специализированных аппаратных и программных средств обеспечивает соответствие действующим международным стандартам в области построения компьютерных сетей, что способствует снижению затрат и сокращению времени на их проектирование, монтаж и отладку, а также повышает надежность их последующей работы;

 

поддержка различных способов доступа пользователей к ресурсам сети, соответствующих реализованным в ней сервисам (функциям), характеру и использованию конкретных ресурсов и др. При необходимости в сети должен быть обеспечен режим удаленного доступа, реализована возможность одновременного использования сетевого ресурса несколькими пользователями или процессами;

 

* обеспечение безопасности информации, включающее в себя сохранение ее целостности, конфиденциальности и доступность информации для пользователей при наличии у них требуемых уровней полномочий.

 

Любая компьютерная сеть в самом общем виде может быть представлена в виде двух взаимодействующих составляющих: коммутационной системы и совокупности абонентов (включая их оборудование: рабочие станции, серверы и др.). Основным назначением коммутационной системы является формирование транспортной среды, обеспечивающей связь абонентов друг с другом. Абоненты сети потенциально могут как предоставлять сетевые услуги, так и потреблять их. Изменение масштабов компьютерной сети приводит к изменению сложности ее обеих составляющих.

 

ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ, КАНАЛЫ СВЯЗИ И КОММУНИКАЦИОННОЕ ОБОРУДОВАНИЕ

 

Телекоммуникационная система представляет собой распределенную сеть, объединяющую традиционные сети передачи данных с передачей сообщений в цифровой форме и телефонные сети с передачей сообщений в аналоговой форме, предназначенную для передачи между абонентами трафика различной природы, с различными вероятностно-временными характеристиками.

 

Основной функцией телекоммуникационных систем, поддерживающих работу компьютерных сетей, является организация оперативного и надежного обмена данными между абонентами. Главный показатель эффективности функционирования телекоммуникационных систем - время доставки сообщений - определяется рядом факторов:

 

структурой сети связи;

 

пропускной способностью линий связи;

 

способами соединения каналов связи между абонентами;

 

используемыми протоколами информационного обмена;

 

методами доступа абонентов к передающей среде;

 

методами маршрутизации пакетов и др.

 

В целом на телекоммуникационную систему возлагается выполнение ряда задач связанных с обеспечением пользовательского трафика:

 

· согласование форматов сообщений (сигналов) передаваемых через различные каналы системы;

 

· синхронизацию работы каналов;

 

· коммутацию (каналов, сообщений, пакетов);

 

· маршрутизацию (сообщений, пакетов);

 

· обеспечение требуемого уровня помехозащищенности и др.

 

Соответственно, все аппаратные и программные средства, обеспечивающие решение этих задач, являются частью телекоммуникационной системы.

 

Для телекоммуникационных систем характерен ряд специфических особенностей:

 

· разнотипность применяемых каналов связи - от телефонных до спутниковых;

 

· ограниченность числа каналов между абонентами, которые можно использовать для передачи различного рода сообщений;

 

· различные уровни пропускной способности доступных каналов связи.

 

Одним из важнейших факторов, определяющим возможности телекоммуникационных систем и компьютерных сетей в целом, являются технические характеристики каналов связи.

 

Канал связи (передачи данных) состоит из линии связи и используемой на обеих сторонах линии аппаратуры передачи данных.

 

Линия связи представляет собой физическую среду, через которую с помощью сигналов осуществляется передача данных. Для передачи большого трафика на значительные расстояния широкое применение находят спутниковые, радиорелейные, кабельные и оптоволоконные каналы связи.

 

Для оценивания свойств каналов связи и коммуникационной сети используют ряд характеристик:

 

· скорость передачи данных по каналу связи (измеряется в бит/с);

 

· пропускную способность канала связи (измеряется количеством передаваемых символов за секунду);

 

· достоверность передачи данных (измеряется количеством ошибок на один переданный знак);

 

· надежность (измеряется средним временем безотказной работы в часах).

 

В зависимости от вида используемых линий связи каналы подразделяются на проводные и беспроводные. К беспроводным каналам относят: спутниковые, инфракрасные, радиорелейные и другие каналы связи. В проводных каналах используются телефонные линии, различного рода кабели для передачи электрических и оптических сигналов.

 

Появление спутниковых сетей связи (первый спутник связи запущен в 1958 году) сравнимо по значимости с изобретением телефона. В настоящее время спутники связи выводятся на геостационарные орбиты, при этом они постоянно находятся над определенными участками поверхности Земли. К преимуществам спутниковой связи относятся: большая пропускная способность, обусловленная работой в широком диапазоне гигагерцовых частот; обеспечение связи между узлами (станциями), расположенными на большом расстоянии друг от друга; независимость оплаты трафика от расстояния (стоимость определяется временем работы или объемом трафика). В то же время при использовании спутниковой связи необходимо предпринимать меры повышенной информационной безопасности, исключающие возможность перехвата передаваемых сообщений, имеет место задержка сигнала при приеме из-за больших расстояний, возможно временное ухудшение качества связи из-за воздействия атмосферных явлений.

 

Различают выделенные некоммутируемые каналы связи и каналы связи с коммутацией на время передачи данных по этим каналам.

 

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации и более высокое качество связи. Однако, из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии высокой загрузки каналов.

 

Для коммутируемых каналов, создаваемых только на время передачи определенного объема данных, характерны высокая гибкость и сравнительно небольшая стоимость при малом объеме трафика. Недостатки таких каналов: потери времени на коммутацию (на установление связи между абонентами), возможность блокировки передачи из-за занятости отдельных участков линии связи, пониженное качество передачи, большая стоимость при значительном объеме трафика.

 

В каналах связи используется три режима передачи: симплексный, полудуплексный и дуплексный.

 

Симплексный режим используется для передачи данных только в одном направлении. Характерным примером организации симплексного канала является система телевизионного вещания (от излучающей антенны телевизионного центра к принимающей антенне абонента).

 

Полудуплексный режим обеспечивает возможность передачи сообщений в обоих направлениях, но в любой момент времени всегда только в одном направлении. Полудуплексный режим обмена сообщениями характерен для нормального протекания экзамена, когда вопросы одной стороны сопровождаются последующими ответами другой стороны.

 

Дуплексный режим обеспечивает одновременную передачу сообщений в обоих направлениях. Фактически дуплексный канал представляет собой два разнонаправленных симплексных канала между двумя узлами сети. Дуплексный режим широко используется при передаче сообщений как в локальных, так и в глобальных сетях, обеспечивая эффективное использование ЭВМ и каналов связи.

 

Для сопряжения компьютеров с каналами связи необходимы специализированные устройства - сетевые адаптеры. Они позволяют согласовать параметры сигналов внутреннего интерфейса компьютеров с параметрами сигналов, используемых в каналах связи определенного типа. При этом обеспечивается как физическое согласование по форме, уровню сигналов, так и на уровне кодирования. Помимо одноканальных адаптеров в сетях широко используют и многоканальные адаптеры - мультиплексоры передачи данных. В сетях со сложной конфигурацией находят применение специализированные интеллектуальные связные процессоры.

 

При подключении компьютера к телефонной линии функции сетевого адаптера выполняет модем. При увеличении протяженности сети с использованием кабелей применяют повторители, обеспечивающие поддержание формы и амплитуды сигнала при передаче его на большее по сравнению с типовыми значениями расстояние.

Типы компьютерных сетей

 

 

Любая сеть состоит из совокупности кабелей, сетевого оборудования, файловых серверов, рабочих станций и программного обеспечения. Комбинируя эти элементы, можно создать сеть, соответствующую задачам и возможностям конкретной организации.

 

Первоначальная установка некоторых типов сетей не требует больших расходов, однако расходы появляются при эксплуатации или модернизации. Другие сети, наоборот, требуют значительных капиталовложений на этапе развертывания, но они просты в обслуживании их легко расширять.

 

Одним из важнейших различий между разными типами сетей является их топология. Топология - это физическая конфигурация сети в совокупности с ее логическими характеристиками.

 

Физическая конфигурация подобна плану разводки кабелей в офисе, здании или кампусе. Иногда ее называют кабельным участком (cable plant). Логические характеристики сети описывают способ передачи сигнала по кабелю от одной точки к другой.

 

Конфигурация сети может быть или децентрализованной (когда кабель "обегает" каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями).

 

Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый альпинист имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.

 

Существуют три основных топологии: шина, кольцо и звезда. При выборе топологии необходимо, чтобы тип сети соответствовал ее предназначению внутри организации.

 

Например, некоторые организации более интенсивно используют свои сети по сравнению с другими. Количество и тип прикладных программ внутри организации влияют на количество и частоту передачи фреймов и пакетов, что в совокупности образует сетевой трафик. Если пользователи сети в первую очередь работают с текстовыми редакторами, то сетевой трафик будет относительно небольшим и большая часть работы будет выполняться на рабочих станциях, а не в сети.

 

Клиент-серверные приложения в зависимости от своей архитектуры создают сетевой трафик средней и высокой интенсивности.

 

В сетях, в которых происходят частые обращения к базам данных, таким как Microsoft SQL Server или Oracle, трафик средний или высокий. Научные программы и серверы публикаций создают трафик высокой интенсивности, поскольку они работают с очень большими файлами.

 

Также большой трафик вызывает работа программ обработки графики (например, серверы потокового мультимедиа или телеконференций).

 

Влияние на сеть количества хостов и серверов определяется типом используемых прикладных программ.

 

К примеру, сервер базы данных, к которому часто обращаются для получения отчетов и финансовых сведений, будет создавать значительно больший сетевой трафик, чем файловый сервер, с которого изредка получают деловую корреспонденцию или бланки писем.

 

При выборе топологии сети нужно учитывать, будет ли она связана с другими сетями.

 

Сетевая топология для малого предприятия, в котором используются несколько компьютеров, отличается от топологии сети промышленного предприятия, связанного через глобальную сеть с сетями других предприятий. Малое предприятие вряд ли взаимодействует с другими сетями, за исключением разве что подключения к Интернету.

 

Корпоративная сеть может состоять из нескольких взаимно связанных сетей, в число которых, например, могут входить сеть для управления производственным оборудованием, сеть настольных систем, исследовательская сеть и внешняя глобальная сеть для связи с удаленными площадками. Одни топологии имеют лучшие возможности для объединения сетей, чем другие.

 

Сеть с большим трафиком нуждается в высокоскоростных каналах передач данных.

 

От скорости сети зависит производительность работы пользователей. Наличие быстродействующих каналов особенно важно при передач изображений, графики и других объемных файлов на большие расстояний или через глобальные сети.

 

Безопасность, представляющая собой механизм защиты данных от неавторизованного доступа, также влияет на архитектуру сети. В безопасной сет для ограничения доступа к информации и ресурсам используются специальные сетевые устройства, пароли, управляющие программы и другие технологии.

 

Можно также применять шифрование данных и паролей, копи фреймы и пакеты кодируются, и только авторизованные компьютеры могут декодировать их.

 

В сетях с высокой степенью защиты используется оптоволоконный кабель, который минимизирует риск перехвата данных. Другой способ повысить защищенность сети - поместить оборудование и сервер в помещения с ограниченным доступом (например, в серверные комнаты; монтажные шкафы).

 

Топология сети непосредственно влияет на возможность ее расширения. После установки сети наверняка потребуется подключение новых пользователей, в том же офисе или в других помещениях или зданиях. Также весьма вероятно, что для удаленного доступа к данным потребуется подключи локальную сеть к какой-нибудь глобальной сети.

 

Шинная топология (bus topology) представляет собой кабель, последователь соединяющий компьютеры и серверы в виде цепочки. Как и обычная цен сеть с шинной топологией имеет начальную и конечную точки, и к каждому концу сегмента шинного кабеля подключается терминатор (terminator). Передаваемый пакет принимается всеми узлами сегмента и на прохождения всего сегмента требуется некоторое количество времени, называемое задержкой.

 

Для того чтобы пакеты доходили в течение ожидаемого времени, длина сегмента сети с шинной топологией должна соответствовать спецификациям Института инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers, IEEE).

 

Этот институт представляет собой объединение ученых, инженеров, технических специалистов и преподавателей, играющих ведущую роль в разработке стандартов на сетевые кабельные системы и средства передачи данных. На рис. 1 изображена простейшая сеть с шинной топологией.

 

Наличие терминатора обязательно для шинной топологии, поскольку терминатор указывает на физическое окончание сегмента.

 

На практике терминатор представляет собой электрическое сопротивление, гасящее сигнал, когда тот достигает конца сети.

 

Без терминатора сегмент не соответствовал бы спецификациям IEEE, и сигналы могли бы отражаться обратно и воз вращаться в тот кабель, по которому они были переданы. Отраженный сигнал сбивает синхронизацию сети и может столкнуться с новыми сигналами, передаваемыми по сети.

 

Если терминатор отсутствует или работает неправильно, передача данных по соответствующему сегменту сети нарушается, и сетевое оборудование обычно отключает этот сегмент.

 

Традиционная шинная топология, показанная на рис. 1, хорошо работает небольших сетях, и стоимость ее реализации относительно невелика.

 

При развертывании сети расходы минимальны, поскольку кабеля требуется меньше, чем для других топологий. Также легко можно добавить новые рабочие станции и немного удлинить шину в пределах комнаты или офис.

 

Недостатком этой топологии является высокая стоимость ее эксплуатации. Например, трудно обнаружить отдельный неисправный узел или сегмент кабеля и связанные с ним разъемы, а один отказавший узел или сегмент с разъемами может вывести из строя всю сеть (хотя современное сетевое оборудование уменьшает вероятность такой ситуации).

 

Другим недостатком является то, что трафик по шине может оказаться слишком большим, из-за чего для управления им потребуются дополнительные коммутаторы, маршрутизаторы и другое оборудование.

 

Традиционная шинная топология используется все реже и реже, поскольку некоторые производители сетевого и компьютерного оборудования больше не поддерживают применяемые в ней методы передачи сигналов.

 

Кольцевая топология (ring topology) представляет собой непрерывную магистраль для передачи данных, не имеющую логической начальной или конечной точек и, следовательно, терминаторов. Рабочие станции и серверы подключаются к кабелю в точках, расположенных по кольцу (рис. 2.). Когда данные поступают в кольцо, они передаются по нему от узла к узлу, пока не достигнут точки назначения, после чего перемещаются дальше к узлу отправителю.

 

Первоначально кольцевая топология позволяла данным перемещаться только в одном направлении, при этом данные обегали кольцо и передача заканчивалась в передающем (исходном) узле.

 

В новых высокоскоростных технологиях кольцевых сетей используются два кольца для дополнительной передачи данных в обратном направлении.

 

В результате этого, если разрывается кольцо передачи в одном направлении, данные все же могут достигнуть пункта назначения, перемещаясь в обратном направлении по другому кольцу (о чем будет рассказано позже в разделе, описывающем технологию FDDI).

 

Кольцевой топологией легче управлять, чем шинной, поскольку оборудование, используемое для построения кольца, упрощает локализацию дефектного узла или неисправного кабеля.

 

Данная топология хорошо подходит для передачи сигналов в локальных сетях, поскольку она справляется с большим сетевым трафиком лучше, чем шинная топология.

 

В целом можно сказать, что по сравнению с шинной топологией, кольцевая обеспечивает более надежную передачу данных.

 

Однако кольцевая топология намного дороже шинной. Обычно для ее развертывания требуется больше кабеля и сетевого оборудования.

 

Кроме того, Кольцо не так широко распространено как шинная топология, из-за чего ограничен выбор оборудования и меньше возможностей для осуществления высокоскоростных коммуникаций.

 

Звездообразная топология (star topology), или просто "звезда", является старейшим способом передачи сигналов, имеющим свое начало в коммутационных телефонных станциях.

 

Несмотря на возраст, достоинства при использовании в сетях делают звездообразную топологию удачным выбором для современных сетей.

 

Физически звездообразная топология состоит из множества узлов, подключенных к центральному концентратору.

 

Каким образом рабочие станции и сервер подключены к концентратору, показано на рис. 3. Концентратор (hub) - это центральное устройство, объединяющее в сеть отдельные кабельные сегменты или отдельные локальные сети.

 

Некоторые концентраторы также называются элементами доступа (access unit) Отдельные сегменты передающего кабеля расходятся от концентратора как звезда (выполните практическое задание 2-6 и создайте диаграмму звездообразной топологии).

 

В настоящее время начальные затраты на реализацию звездообразной топологии ниже, чем для традиционной шинной топологии и сравнимы с рая ходами на создание кольца. Это объясняется понижением цен на сетевое оборудование и кабель, вызванным широким распространением этой архитектуры.

 

Как и кольцо, звездообразная топология проще в управлении, чем традиционная шинная сеть (отказавшие узлы обнаруживаются очень быстро). Если узел или кабель неисправны, сетевое оборудование легко может изолировать их от сети и работоспособность других узлов не нарушится.

 

Звезду легче расширить, подключив дополнительные узлы или сети. Также она наилучшим образом может быть модернизируема для работы на больших скоростях. Звезда - это наиболее распространенная топология и поэтому для нее существует широкий выбор оборудования.

 

Недостатком звезды является то, что концентратор является единственной точкой отказа: при выходе его из строя все подключенные узлы теряют возможность передачи данных (если отсутствуют дополнительные меры обеспечения избыточности).

 

Другим недостатком является то, что для звезды требуется больше кабеля, чем для шины; однако кабели и разъемы для звездообразной топологии в настоящее время дешевле, чем для шинной.

 

В современных сетях логическая организация сети с применением шинной топологии совмещается с физической реализацией в виде звезды.

 

При такой архитектуре каждый луч звезды функционирует как отдельный сегмент логической шины, имеющий только один или два подключенных компьютера.

 

Такой сегмент шины по-прежнему имеет два конца, однако преимуществом является отсутствие терминаторов. В данном случае один конец сегмента заканчивается на концентраторе, а другой - на сетевом устройстве.

 

Другим достоинством комбинированной архитектуры является то, что для расширения сети в разных направлениях можно соединить несколько концентраторов при условии выполнения спецификаций IEEE на длину кабелей, количество концентраторов и подключенных устройств.

 

Соединение между концентраторами представляет собой магистраль, которая чаще всего обеспечивает высокоскоростную передачу данных между ними.

 

Магистраль (backbone) - это быстродействующая среда передачи информации, соединяющая сети и центральные сетевые устройства в масштабах этажа, всего здания или нескольких удаленных площадок.

 

Для упрощения процесса обнаружения неисправностей концентраторы имеют специальные встроенные средства. Также имеются возможности расширения для реализации высокоскоростных сетей.

 

Поскольку описываемая архитектура широко распространена, то для шинных сетей, реализованных в виде физической звезды, имеется большой выбор оборудования.