ЛЕКЦИЯ 3. БИОХИМИЯ ПЕЧЕНИ

Роль печени в обмене веществ

Печень в организме человека выполняет целый ряд разнообразных и жизненно важных функций. Печень участвует практически во всех видах обмена: белковом, липидном, углеводном, водно-минеральном, пигментном.

Важнейшее значение печени в обмене веществ в первую очередь определяется тем, что она является как бы большой промежуточной станцией между портальным и общим кругом кровообращения. В печень человека более 70% крови поступает через воротную вену, остальная кровь попадает через печеночную артерию. Кровь воротной вены омывает всасывающую поверхность кишечника, и в результате большая часть веществ, всасывающихся в кишечнике, проходит через печень (кроме липидов, транспорт которых в основном осуществляется через лимфатическую систему). Таким образом, печень функционирует как первичный регулятор содержания в крови веществ, поступающих в организм с пищей. Доказательством справедливости данного положения является следующий общий факт: несмотря на то что всасывание питательных веществ из кишечника в кровь происходит прерывисто, непостоянно, в связи с чем в портальном круге кровообращения могут наблюдаться изменения концентрации ряда веществ (глюкоза, аминокислоты и др.), в общем круге кровообращения изменения в концентрации указанных соединений незначительны. Все это подтверждает важную роль печени в поддержании постоянства внутренней среды организма. Печень выполняет также крайне важную экскреторную функцию, теснейшим образом связанную с ее детоксикационной функцией. В целом без преувеличения можно констатировать, что в организме нет путей обмена веществ, которые прямо или косвенно не контролировались бы печенью, в связи с чем многие важнейшие функции печени уже рассматривались в соответствующих главах учебника. В данной главе будет сделана попытка дать обобщающие представления о роли печени в обмене веществ целостного организма.

 

ХИМИЧЕСКИЙ СОСТАВ ПЕЧЕНИ

 

У взрослого здорового человека масса печени составляет в среднем 1,5 кг. Некоторые исследователи считают, что эту величину следует рассматривать как нижнюю границу нормы, а диапазон колебаний от 20 до 60 г на 1 кг массы тела. В табл. представлены некоторые данные о химическом составе печени в норме. Из данных табл. видно, что более 70% от массы печени составляет вода. Однако следует помнить, что масса печени и ее состав подвержены значительным колебаниям как в норме, так и особенно при патологических состояниях. Например, при отеках количество воды может составлять до 80% от массы печени, а при избыточном отложении жира в печени – снизиться до 55%. Более половины сухого остатка печени приходится на долю белков, причем примерно 90% из них – на глобулины. Печень богата различными ферментами. Около 5% от массы печени составляют липиды: нейтральные жиры (триглицериды), фосфолипиды, холестерин и др. При выраженном ожирении содержание липидов может достигать 20% от массы органа, а при жировом перерождении печени количество липидов может составлять 50% от сырой массы.

В печени может содержаться 150–200 г гликогена. Как правило, при тяжелых паренхиматозных поражениях печени количество гликогена в ней уменьшается. Напротив, при некоторых гликогенозах содержание гликогена достигает 20% и более от массы печени.

Разнообразен и минеральный состав печени. Количество железа, меди, марганца, никеля и некоторых других элементов превышает их содержание в других органах и тканях.

 

ПЕЧЕНЬ В УГЛЕВОДНОМ ОБМЕНЕ

 

Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией между синтезом и распадом гликогена, депонируемого в печени.

Участие печени в поддержании концентрации глюкозы в крови определяется тем, что в ней протекают процессы гликогенеза , гликогенолиза , гликолиза и глюконеогенеза . Эти процессы регулируются многими гормонами, в том числе инсулином , глюкагоном , СТГ , глюкокортикоидами и катехоламинами . Поступающая в кровь глюкоза быстро захватывается печенью. Считают, что это обусловлено исключительно высокой чувствительностью гепатоцитов к инсулину (хотя есть данные, заставляющие усомниться в важности этого механизма). При голодании снижается уровень инсулина и повышаются уровни глюкагона и кортизола . В ответ на это в печени усиливаются гликогенолиз и глюконеогенез . Для глюконеогенеза необходимы аминокислоты, особенно аланин , которые образуются при распаде мышечных белков. Напротив, после приема пищи аланин и разветвленные аминокислоты поступают из печени в мышцы, где участвуют в синтезе белков. Этот глюкозо-аланиновый цикл регулируется изменениями сывороточных концентраций инсулина , глюкагона и кортизола .

Предполагалось, что после приема пищи гликоген и жирные кислоты синтезируются прямо из глюкозы . Однако на самом деле эти превращения происходят непрямым путем с участием трикарбоновых метаболитов глюкозы (например, лактата ) или других субстратов глюконеогенеза , таких, как фруктоза и аланин .

При циррозе печени часто изменяется уровень глюкозы в крови. Обычно наблюдаются гипергликемия и нарушение толерантности к глюкозе . При этом активность инсулина в крови нормальна или повышена (за исключением гемохроматоза); следовательно, нарушение толерантности к глюкозе обусловлено инсулинорезистентностью. Ее причиной может быть снижение числа функционирующих гепатоцитов .

Есть также данные, что при циррозе печени наблюдается рецепторная и пострецепторная инсулинорезистентность гепатоцитов. Кроме того, при портокавальном шунтировании уменьшается печеночная элиминация инсулина и глюкагона, поэтому концентрация этих гормонов повышается. Однако при гемохроматозе уровень инсулина может снижаться (вплоть до развития сахарного диабета ) из-за отложения железа в поджелудочной железе . При циррозе способность печени использовать лактат в реакциях глюконеогенеза снижается, в результате его концентрация в крови может возрасти.

Хотя гипогликемия наиболее часто возникает при молниеносном гепатите , она может развиться и на конечных стадиях цирроза печени - вследствие снижения запаса гликогена в печени, уменьшения реакции гепатоцитов на глюкагон, понижения способности печени синтезировать гликоген из-за обширного разрушения клеток. Это усугубляется тем, что количество гликогена в печени даже в норме ограничено (около 70 г), организму же необходимо постоянное поступление глюкозы (около 150 г/сут). Поэтому запасы гликогена в печени истощаются очень быстро (в норме - уже после первого дня голодания).

В печени синтез гликогена и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, если ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного «голодания»).

Синтез и распад гликогена

Необходимо подчеркнуть важную роль фермента глюкокиназы в процессе утилизации глюкозы печенью. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата, при этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение КМ для глюкозы и не ингибируется глюкозо-6-фосфатом.

После приема пищи содержание глюкозы в воротной вене резко возрастает: в тех же пределах увеличивается и ее внутрипеченочная концентрация . Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увеличивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется).

Особенности метаболизма гликогена в печени и мышцах

Считают, что основная роль печени – расщепление глюкозы – сводится прежде всего к запасанию метаболитов-предшественников, необходимых для биосинтеза жирных кислот и глицерина, и в меньшей степени к окислению ее до СО2 и Н2О. Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеинов и транспортируются в жировую ткань для более «постоянного» хранения.

В реакциях пентозофосфатного пути в печени образуется НАДФН, используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, при этом образуются пентозофосфаты, необходимые для синтеза нуклеиновых кислот.

Пентозофосфатный путь превращения глюкозы

Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза.

Основными субстратами глюконеогенеза служат лактат, глицерин и аминокислоты. Принято считать, что почти все аминокислоты, за исключением лейцина, могут пополнять пул предшественников глюконеогенеза.

При оценке углеводной функции печени необходимо иметь в виду, что соотношение между процессами утилизации и образования глюкозы регулируется прежде всего нейрогуморальным путем при участии желез внутренней секреции.

Центральную роль в превращениях глюкозы и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани (рис. 16.1).

Как отмечалось, наиболее мощным аллостерическим активатором фосфофруктокиназы-1 и ингибитором фруктозо-1,6-бисфосфатазы печени является фруктозо-2,6-бисфосфат (Ф-2,6-Р2). Повышение в гепатоцитах уровня Ф-2,6-Р2 способствует усилению гликолиза и уменьшению скорости глюконеогенеза. Ф-2,6-Р2 снижает ингибирующее действие АТФ на фосфо-фруктокиназу-1 и увеличивает сродство этого фермента к фруктозо-6-фосфату. При ингибировании фруктозо-1,6-бисфосфатазы Ф-2,6-Р2 возрастает значение КМ для фруктозо-1,6-бисфосфата. Содержание Ф-2,6-Р2 в печени, сердце, скелетной мускулатуре и других тканях контролируется бифункциональным ферментом, который осуществляет синтез Ф-2,6-Р2 из фруктозо-6-фосфата и АТФ и гидролиз его до фруктозо-6-фосфата и Pi, т.е. фермент одновременно обладает и киназной, и бисфосфатазной активностью. Бифункциональный фермент (фосфофруктокиназа-2/фруктозо-2,6-бисфосфатаза), выделенный из печени крысы, состоит из двух идентичных субъединиц с мол. массой 55000, каждая из которых имеет два различных каталитических центра. Киназный домен при этом расположен на N-конце, а бисфосфатазный – на С-конце каждой из полипептидных цепей. Известно также, что бифункциональный фермент печени является прекрасным субстратом для цАМФ-зависимой протеинкиназы А. Под действием про-теинкиназы А происходит фосфорилирование остатков серина в каждой из субъединиц бифункционального фермента, что приводит к снижению его киназной и повышению бисфосфатазной активности. Заметим, что в регуляции активности бифункционального фермента существенная роль принадлежит гормонам, в частности глюкагону.

При многих патологических состояниях, в частности при сахарном диабете, отмечаются существенные изменения в функционировании и регуляции системы Ф-2,6-Р2. Установлено, что при экспериментальном (стептозотоциновом) диабете у крыс на фоне резкого увеличения уровня глюкозы в крови и моче в гепатоцитах содержание Ф-2,6-Р2 снижено. Следовательно, снижается скорость гликолиза и усиливается глюконео-генез. Данный факт имеет свое объяснение. Возникающие у крыс при диабете нарушения гормонального фона: увеличение концентрации глю-кагона и уменьшение содержания инсулина – обусловливают повышение концентрации цАМФ в ткани печени, усиление цАМФ-зависимого фосфорилирования бифункционального фермента, что в свою очередь приводит к снижению его киназной и повышению бисфосфатазной активности. Таков может быть механизм снижения уровня Ф-2,6-Р2 в гепатоцитах при экспериментальном диабете. По-видимому, существуют и другие механизмы, ведущие к снижению уровня Ф-2,6-Р2 в гепатоцитах при стрептозото-циновом диабете. Показано, что при экспериментальном диабете в ткани печени имеет место снижение активности глюкокиназы (возможно, и снижение количества данного фермента). Это приводит к падению скорости фосфорилирования глюкозы, а затем к снижению содержания фруктозо-6-фосфата – субстрата бифункционального фермента. Наконец, в последние годы было показано, что при стрептозотоциновом диабете уменьшается количество мРНК бифункционального фермента в гепатоцитах и как следствие – снижается уровень Ф-2,6-Р2 в ткани печени, усиливается глюко-неогенез. Все это еще раз подтверждает положение, что Ф-2,6-Р2, являясь важным компонентом в цепи передачи гормонального сигнала, выступает в роли третичного посредника при действии гормонов, прежде всего на процессы гликолиза и глюконеогенеза.

Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь: фруктоза способна фосфорилироваться при участии более специфического фермента – фруктокиназы. В результате образуется фруктозо-1-фосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-1-фосфат под действием альдолазы расщепляется на две триозы: диоксиацетонфосфат и глицераль-дегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-3-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты.

Следует отметить, что при генетически обусловленной нетолерантности к фруктозе или недостаточной активности фруктозо-1,6-бисфосфатазы наблюдается индуцируемая фруктозой гипогликемия, возникающая вопреки наличию больших запасов гликогена. Вероятно, фруктозо-1-фосфат и фруктозо-1,6-бисфосфат ингибируют фосфорилазу печени по аллосте-рическому механизму.

Известно также, что метаболизм фруктозы по гликолитическому пути в печени происходит гораздо быстрее, чем метаболизм глюкозы. Для метаболизма глюкозы характерна стадия, катализируемая фосфофрукто-киназой-1. Как известно, на этой стадии осуществляется метаболический контроль скорости катаболизма глюкозы. Фруктоза минует эту стадию, что позволяет ей интенсифицировать в печени процессы метаболизма, ведущие к синтезу жирных кислот, их эстерификацию и секрецию липопротеинов очень низкой плотности; в результате может увеличиваться концентрация триглицеридов в плазме крови.

Галактоза в печени сначала фосфорилируется при участии АТФ и фермента галактокиназы с образованием галактозо-1-фосфата. Для га-лактокиназы печени плода и ребенка характерны значения КМ и Vмaкс, примерно в 5 раз превосходящие таковые у ферментов взрослого человека. Большая часть галактозо-1-фосфата в печени превращается в ходе реакции, катализируемой гексозо-1-фосфат-уридилилтрансферазой:

УДФ-глюкоза + Галактозо-1-фосфат –> УДФ-галактоза + Глюкозо-1-фосфат.

Это уникальная трансферазная реакция возвращения галактозы в основное русло углеводного метаболизма. Наследственная утрата гексозо-1-фосфат-уридилилтрансферазы приводит к галактоземии – заболеванию, для которого характерны умственная отсталость и катаракта хрусталика. В этом случае печень новорожденных теряет способность метаболизи-ровать D-галактозу, входящую в состав лактозы молока.

РОЛЬ ПЕЧЕНИ В ЛИПИДНОМ ОБМЕНЕ

Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов. Совокупность этих реакций лежит в основе таких процессов, как синтез высших жирных кислот, триглицеридов, фосфолипидов, холестерина и его эфиров, а также липолиз триглицеридов, окисление жирных кислот, образование ацетоновых (кетоновых) тел и т.д. Напомним, что ферментативные реакции синтеза триглицеридов в печени и жировой ткани сходны. Так, КоА-производные жирной кислоты с длинной цепью взаимодействуют с глицерол-3-фосфатом с образованием фосфатидной кислоты, которая затем гидролизуется до диглицерида. Путем присоединения к последнему еще одной молекулы КоА-производного жирной кислоты образуется триглицерид. Синтезированные в печени три-глицериды либо остаются в печени, либо секретируются в кровь в форме липопротеинов. Секреция происходит с известной задержкой (у человека 1–3 ч). Задержка секреции, вероятно, соответствует времени, необходимому для образования липопротеинов. Основным местом образования плазменных пре-β-липопротеинов (липопротеины очень низкой плотности – ЛПОНП) и α-липопротеинов (липопротеины высокой плотности – ЛПВП) является печень.

ХС - холестерин

ТГ - триглицериды

ЖК - жирные кислоты

ХМ - хиломикроны

ЛПЛ - липопротеинлипаза

ТГЛ - триглицеридлипаза.

Рассмотрим образование ЛПОНП. Согласно данным литературы, основной белок апопротеин В-100 (апо Б-100) липопротеинов синтезируется в рибосомах шероховатого эндоплазматического ретикулума гепатоцитов. В гладком эндоплазматическом ретикулуме, где синтезируются и липидные компоненты, происходит сборка ЛПОНП. Одним из основных стимулов образования ЛПОНП является повышение концентрации неэстерифици-рованных жирных кислот (НЭЖК). Последние либо поступают в печень с током крови, будучи связанными с альбумином, либо синтезируются непосредственно в печени. НЭЖК служат главным источником образования триглицеридов (ТГ). Информация о наличии НЭЖК и ТГ передается на мембранно-связанные рибосомы шероховатого эндоплазматического ретикулума, что в свою очередь является сигналом для синтеза белка (апо В-100). Синтезированный белок внедряется в мембрану шероховатого ретикулума, и после взаимодействия с фосфолипидным бислоем от мембраны отделяется участок, состоящий из фосфолипидов (ФЛ) и белка, который и является предшественником ЛП-частицы. Далее белокфосфо-липидный комплекс поступает в гладкий эндоплазматический ретикулум, где взаимодействует с ТГ и эстерифицированным холестерином (ЭХС), в результате чего после соответствующих структурных перестроек формируются насцентные, т.е. незавершенные, частицы (н-ЛПОНП). Последние поступают через тубулярную сеть аппарата Гольджи в секреторные везикулы и в их составе доставляются к поверхности клетки, после чего очень низкой плотности (ЛПОНП) в печеночной клетке (по А.Н. Климову и Н.Г. Никульчевой).

Путем экзоцитоза выделяются в перисинусоидные пространства (пространства Диссе). Из последнего н-ЛПОНП поступают в просвет кровяного синусоида, где происходят перенос апопротеинов С из ЛПВП на н-ЛПОНП и достраивание последних (рис. 16.3). Установлено, что время синтеза апо В-100, образования липид-белковых комплексов и секреции готовых частиц ЛПОНП составляет 40 мин.

У человека основная масса β-липопротеинов (липопротеины низкой плотности – ЛПНП) образуется в плазме крови из ЛПОНП при действии липопротеинлипазы. В ходе этого процесса образуются сначала промежуточные короткоживущие липопротеины (Пр.ЛП), а затем формируются частицы, обедненные триглицеридами и обогащенные холестерином, т.е. ЛПНП.

При высоком содержании жирных кислот в плазме их поглощение печенью возрастает, усиливается синтез триглицеридов, а также окисление жирных кислот, что может привести к повышенному образованию кетоновых тел.

Следует подчеркнуть, что кетоновые тела образуются в печени в ходе так называемого β-гидрокси-β-метилглутарил-КоА пути. Однако существует мнение, что ацетоацетил-КоА, являющийся исходным соединением при кетогенезе, может образоваться как непосредственно в ходе β-окисле-ния жирных кислот, так и в результате конденсации ацетил-КоА [Марри Р. и др., 1993]. Из печени кетоновые тела током крови доставляются в ткани и органы (мышцы, почки, мозг и др.), где они быстро окисляются при участии соответствующих ферментов, т.е. по сравнению с другими тканями печень является исключением.

В печени происходит интенсивный распад фосфолипидов, а также их синтез. Помимо глицерина и жирных кислот, которые входят в состав нейтральных жиров, для синтеза фосфолипидов необходимы неорганические фосфаты и азотистые соединения, в частности холин, для синтеза фосфатидхолина. Неорганические фосфаты в печени имеются в достаточном количестве. При недостаточном образовании или недостаточном поступлении в печень холина синтез фосфолипидов из компонентов нейтрального жира становится либо невозможным, либо резко снижается и нейтральный жир откладывается в печени. В этом случае говорят о жировой инфильтрации печени, которая может затем перейти в ее жировую дистрофию. Иными словами, синтез фосфолипидов лимитируется количеством азотистых оснований, т.е. для синтеза фосфоглицеридов необходим либо холин, либо соединения, которые могут являться донорами метильных групп и участвовать в образовании холина (например, метионин). Такие соединения получили название липотропных веществ. Отсюда становится ясным, почему при жировой инфильтрации печени весьма полезен творог, содержащий белок казеин, в составе которого имеется большое количество остатков аминокислоты метионина.

Рассмотрим роль печени в обмене стероидов, в частности холестерина. Часть холестерина поступает в организм с пищей, но значительно большее количество его синтезируется в печени из ацетил-КоА. Биосинтез холестерина в печени подавляется экзогенным холестерином, т.е. получаемым с пищей.

Таким образом, биосинтез холестерина в печени регулируется по принципу отрицательной обратной связи. Чем больше холестерина поступает с пищей, тем меньше его синтезируется в печени, и наоборот. Принято считать, что действие экзогенного холестерина на биосинтез его в печени связано с торможением β-гидрокси-β-метилглутарил-КоА-редуктазной реакции:

Часть синтезированного в печени холестерина выделяется из организма вместе с желчью, другая часть превращается в желчные кислоты и используется в других органах для синтеза стероидных гормонов и иных соединений.

В печени холестерин может взаимодействовать с жирными кислотами (в виде ацил-КоА) с образованием эфиров холестерина. Синтезированные в печени эфиры холестерина поступают в кровь, в которой содержится также определенное количество свободного холестерина.

 

РОЛЬ ПЕЧЕНИ В ОБМЕНЕ БЕЛКОВ

Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины плазмы, 75–90% α-глобу-линов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-гло-булины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин.

При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане. Известно, что патологический процесс в гепатоцитах резко снижает их синтетические возможности. В результате содержание альбумина в плазме крови резко падает, что может привести к снижению онкотического давления плазмы крови, развитию отеков, а затем асцита. Отмечено, что при циррозах печени, протекающих с явлениями асцита, содержание альбуминов в сыворотке крови на 20% ниже, чем при циррозах без асцита.

Нарушение синтеза ряда белковых факторов системы свертывания крови при тяжелых заболеваниях печени может привести к геморрагическим явлениям.

При поражениях печени нарушается также процесс дезаминирования аминокислот, что способствует увеличению их концентрации в крови и моче. Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9–4,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02–0,05 г/сут).

В организме образование мочевины в основном происходит в печени. Синтез мочевины связан с затратой довольно значительного количества энергии (на образование 1 молекулы мочевины расходуется 3 молекулы АТФ). При заболевании печени, когда количество АТФ в гепатоцитах уменьшено, синтез мочевины нарушается. Показательно в этих случаях определение в сыворотке отношения азота мочевины к аминоазоту. В норме это отношение равно 2:1, а при тяжелом поражении печени составляет 1:1.

Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина. Имеются два источника креатина в организме. Существует экзогенный креатин, т.е. креатин пищевых продуктов (мясо, печень и др.), и эндогенный креатин, синтезирующийся в тканях. Синтез креатина происходит в основном в печени, откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфори-лируясь, превращается в креатинфосфат, а из последнего образуется креатин.

 

ЖЕЛЧЬ

Желчь – жидкий секрет желтовато-коричневого цвета, отделяется печеночными клетками. В сутки у человека образуется 500–700 мл желчи (10 мл на 1 кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов. Относительная плотность печеночной желчи 1,01, а пузырной – 1,04. Концентрация основных компонентов в пузырной желчи в 5–10 раз выше, чем в печеночной.

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови, вследствие чего между желчью и плазмой устанавливается равновесие электролитов, т.е. в образовании желчи принимают участие в основном два механизма – фильтрация и секреция.

В печеночной желчи можно выделить две группы веществ. Первая группа – это вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, ионы Na+, К+, креатин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последнее время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования. Кроме того, в желчи обнаружен ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает.

Основные функции желчи. Эмульсификация. Соли желчных кислот обладают способностью значительно уменьшать поверхностное натяжение. Благодаря этому они осуществляют эмульгирование жиров в кишечнике, растворяют жирные кислоты и нерастворимые в воде мыла. Нейтрализация кислоты. Желчь, рН которой немногим более 7,0, нейтрализует кислый химус, поступающий из желудка, подготавливая его для переваривания в кишечнике. Экскреция . Желчь – важный носитель экскрети-руемых желчных кислот и холестерина. Кроме того, она удаляет из организма многие лекарственные вещества, токсины, желчные пигменты и различные неорганические вещества, такие, как медь, цинк и ртуть. Растворение холестерина. Как отмечалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое сохраняется в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Обычно камни имеют окрашенное желчным пигментом внутреннее ядро, состоящее из белка. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина. Интенсивное образование камней отмечается при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90–95% холестерина, а при инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина; освобождающийся билирубин служит субстратом для образования камней.