Алгоритмы перевода чисел из одной позиционной системы исчисление в другую
1. Для перевода чисел из системы исчисления с основой p в систему исчисления с основой q, используя арифметику новой системы исчисления с основой q, нужно записать коэффициенты разложения, основы степеней и показатели степеней в системе с основой q и выполнить все действия в этой самой системе. Очевидно, что это правило удобно при переводе в десятичную систему исчисления. Например:
из шестнадцатиричной в десятичную:
92C816=9*10163+2*10162+C*10161+8*10160= 9*16103+2*16102+12*16101+8*16100=37576
из восьмиричной в десятичную:
7358=7*1082+3*1081+5*1080= 7*8102+3*8101+5*8100=47710
из двоичной в десятичную:
1101001012=1*1028+1*1027+ 0*1026+1*1025+0*1024+0*1023+ 1*1022+0*1021+1*1020= 1*2108+1*2107+0*2106+1*2105+ 0*2104+0*2103+1*2102+0*2101+ 1*2100=42110
2. Для перевода чисел из системы исчисления с основой p в систему исчисления с основой q с использованием арифметики старой системы исчисления с основой p нужно:
- для перевода целой части:
- последовательно число, записанное в системе основой делить на основу новой системы исчисления, выделяя остатки. Последние записанные в обратном порядке, будут образовывать число в новой системе исчисления;
- для перевода дробной части:
- последовательно дробную часть умножать на основу новой системы исчисления, выделяя целые части, которые и будут образовывать запись дробной части числа в новой системе исчисления.
Этим же правилом удобно пользоваться в случае перевода из десятичной системы исчисления, поскольку ее арифметика для нас привычна.
Пример: 999,3510=1111100111,010112
для целой части:
для дробной части: