Теория прочности. Механическая теория прочности Кулона.

 

Под прочностью или трещина стойкостью понимается способность твердого тела сопротивляться развитию в нем трещины. Величина прочности оценивается либо значением напряжения, при котором тело разрушается, либо работой деформаций.

Трещины хрупкого разрушения в горных породах следует рассматривать как поверхность разрыва вектора перемещения. На такой поверхности все три компоненты u, v, w этого вектора могут иметь разрыв. Имеется три вида независимых кинематических движений верхней и нижней поверхностей трещины относительно друг друга при разрушении тела: нормальный отрыв, поперечный и продольный сдвиги.

Типы движений противоположных поверхностей трещины, расположенной до деформирования в одной плоскости, можно описать следующим образом:

* нормальный отрыв: две противолежащие поверхности трещины стремятся разойтись симметрично относительно плоскости, в которой была расположена трещина до деформации; между сторонами трещины возникает полость;

* поперечный сдвиг: две противолежащие поверхности трещины скользят одна по другой в одной плоскости, но в противоположных направлениях (срез);

* продольный сдвиг: две противолежащие поверхности трещины в процессе деформирования тела претерпевают кручение в противоположном направлении и оказываются после деформации в различных плоскостях (кручение).

Наиболее опасными с точки зрения развития разрушения являются трещины нормального отрыва. Это связано с тем, что при таком варианте разрушения не происходит потерь энергии, связанных с преодолением сил трения между противоположными поверхностями трещины.

При разрушении на разрыв различают прочность теоретическую и техническую (реальную). Под теоретической прочностью понимают прочность бездефектного твердого тела. В этом случае прочность определяется только величиной энергии связи между частицами (атомы, молекулы) твердого тела. Величина теоретической прочности тела на разрыв (развивается трещина нормального отрыва) составляет примерно одну десятую от значения модуля Юнга:

Расчетная величина теоретической прочности некоторых кристаллических минералов: NaCl - 3950 МПа, MgO - 17300 МПа, LiF - 11400 МПа, теоретическая прочность аморфного неорганического стекла составляет 8000 МПа.

Под дефектами твердого тела понимаются любые нарушения кристалллической решетки (внедренные атомы другого вещества и вакансии в узлах кристаллической решетки - это точечные дефекты; дислокации - линейные дефекты; к дефектам относят и механическое повреждение поверхности твердого тела - царапины).

Под технической прочностью понимают прочность реального твердого тела со всеми дефектами. Величина технической прочности значительно (на 2 порядка) меньше теоретической прочности.

Главными дефектами в горной породе, приводящими к значительному понижению их прочности, являются адгезионные границы, трещины и поры. Как следствие этого, реальная прочность горных пород при одноосном растяжении ?р невелика (гранит - 11 МПа, порфирит - 17,5 МПа, песчаник кварцевый - 6,6 МПа, известняк - 3,0 МПа).

Если представить трещины и поры в виде эллипса длиной l и радиусом закругления ?, то низкое значение технической прочности горных пород при их растяжении можно объяснить следующим образом: в тупиковой части микротрещин (вершине) или пор возникает резкое увеличение действующего напряжения (происходит концентрация напряжений).

Переход к двухосному, а затем и трехосному нагружению образцов горных пород приводит к дальнейшему росту их прочности и увеличению энергоёмкости разрушения.

Учет трения, возникающего между сторонами развивающейся сдвиговой трещины, является сутью механических теорий прочности Кулона, Кулона-Навье, Мора. Знакомство с двумя первыми теориями прочности позволит лучше понять роль трения в увеличении прочности горных пород.