От радиоволн до гамма-лучей

Вид ночного неба, усыпанного звездами, с давних пор вселяет в душу человека благоговение и восторг. Потому даже при некотором снижении общего интереса к науке астрономические новости иногда просачиваются в средства массовой информации, чтобы встряхнуть воображение читателя (или слушателя) сообщением о таинственном квазаре на самой окраине Вселенной, о взорвавшейся звезде или о черной дыре, затаившейся в недрах далекой галактики. Вполне естественно, что рано или поздно у заинтересованного человека возникает законный вопрос: «Да полно, уж не водят ли они меня за нос?» Действительно, по астрономии написано множество книг, снимаются научно-популярные фильмы, проводятся конференции, постоянно растут тиражи и объемы профессиональных астрономических журналов, и всё это — продукт простого разглядывания неба?

На этом снимке показана оболочка, сброшенная во время вспышки повторной новой Т Компаса (T Pyxidis). Яркая точка в центре оболочки — двойная звезда, состоящая из обычной звезды и звездного остатка (белого карлика). Вещество звезды перетекает на белый карлик, постепенно накапливаясь на его поверхности. Когда масса накопленного вещества превышает некий критический предел, в системе происходит взрыв. По каким-то причинам (возможно, в результате взаимодействия с остатками предыдущих взрывов) сброшенная оболочка распадается на тысячи крохотных светящихся узелков. Помимо спектроскопического исследования этих узелков, наблюдая за ними на протяжении нескольких лет можно непосредственно видеть, как они разлетаются прочь от системы. © Shara, Williams, Gilmozzi, and NASA. Изображение с сайта hubblesite.org

Возьмем, к примеру, физику, химию или биологию. Там всё понятно. Предмет исследования этих наук можно «потрогать» — если не непосредственно подержать в руках, то, по крайней мере, подвергнуть всестороннему исследованию в экспериментальных установках. Но как могут астрономы с такою же уверенностью утверждать, например: «В двойной системе, удаленной от нас на 6 тыс. световых лет, вещество срывается с красной звезды, закручивается в тонкий диск и накапливается на поверхности белого карлика», предъявляя в качестве доказательства снимок, на котором не видны ни красная звезда, ни карлик, ни тем более диск, а наличествует лишь яркая точка в окружении еще нескольких таких же, разве что не столь ярких? Эта уверенность — не следствие завышенной самооценки. Она проистекает из умения связать мириады разрозненных наблюдательных фактов в единую, взаимосвязанную, внутренне непротиворечивую картину Мироздания, при этом успешно предсказывая открытие новых явлений.

Основу основ наших познаний о Вселенной составляет убежденность в том, что вся она (или, по крайней мере, вся ее видимая часть) управляется теми же физическими законами, что открыты нами на Земле. Это представление возникло не на пустом месте. Нельзя даже сказать, что физические законы сначала открывались на Земле, а потом находили подтверждение в Космосе. Физики никогда не рассматривали нашу планету в отрыве от остальной Вселенной. Закон всемирного тяготения был выведен Ньютоном по наблюдениям Луны, а первым его «триумфом» стал расчет орбиты кометы Галлея. Гелий был обнаружен сначала на Солнце и лишь потом на Земле.

Представление о единстве физических законов позволяет сделать очень важное допущение. Пусть мы не можем, например, проникнуть в недра звезды или в ядро галактики, чтобы непосредственно увидеть происходящие там процессы. Но мы можем логически вывестиэти процессы, наблюдая производимый ими результат. Результатом этим в подавляющем большинстве случаев оказывается свет, точнее электромагнитное излучение в очень широком диапазоне частот, которое мы непосредственно и регистрируем. Всё остальное — помимо излучения — представляет собою продукт теоретической интерпретации наблюдений, суть которой заключена для астрономов в простой формуле «О – С», то есть «наблюдаемое» (observed) минус «вычисленное» (computed). Чтобы понять природу какого-либо объекта, нужно построить его модель, то есть физико-математическое описание происходящих в нём процессов, а затем с помощью этой модели вычислить, какое излучение должно рождаться в этом объекте. Дальше остается сравнить предсказания модели с результатами наблюдений и, если сравнение оказалось не вполне убедительным, то либо изменить параметры имеющейся модели, либо придумать новую, более удачную.

Звездное поле в созвездии Кита (Cetus), по площади примерно равное полной Луне. Может показаться, что все звёзды на нём одинаково белые. Однако если приглядеться, видно, что среди них есть и голубые, и желтые, и красноватые светила. © Роберт Гендлер. Фото с сайта www.astronet.ru. (Более подробно разглядеть этот снимок можно на сайте www.robgendlerastropics.com.)

Сравнивать есть с чем, ибо свет несет в себе колоссальный объем информации. Даже беглого взгляда на звезды достаточно, чтобы заметить — они различаются по цвету. Это уже очень важная информация, так как цвет зависит от температуры. Иными словами, просто посмотрев на звёзды невооруженным взглядом и предположив, что на них действуют известные нам законы излучения (скажем, закон смещения Вина), мы уже можем сказать, что поверхности звезд имеют различную температуру — от двух-трех тысяч градусов (красные звезды) до десятков тысяч градусов (белые и голубые звезды).

Цвет и температура Самым простым видом излучения является тепловое — то есть излучение, связанное с температурой тела. Тепловое излучение греет замерзшие ладони усталого путника, разведшего на обочине дороги небольшой костерок; тепловым излучением освещают наши жилища лампочки накаливания; именно тепловое излучение миллиарды лет несет на Землю солнечную энергию. Формально нагретое тело излучает во всём диапазоне длин волн (или частот), но есть определенная длина волны, на которую приходится максимум излучаемой энергии. Для источника излучения с максимально простыми свойствами, который в физике называется абсолютно черным телом, эта длина волны обратно пропорциональна температуре: λ = 0,29 / T, где длина волны выражена в сантиметрах, а температура — в Кельвинах. Это соотношение называют законом смещения Вина. Зрительно именно эта длина волны (разумеется, в сочетании с кривой спектральной чувствительности глаза) определяет видимый цвет нагретого тела. В спектрах звезд распределение энергии излучения по длинам волн несколько отличается от «чернотельного», однако связь между «цветом» и температурой сохраняется. Слово «цвет» здесь взято в кавычки, поскольку вместо субъективного описания (красный, желтый, голубой и пр.) в астрономии используются менее живописные, но куда более четкие численные характеристики — так называемые показатели цвета.

Конечно, в реальности всё сложнее, поскольку излучение тела не всегда связано с тем, что оно имеет определенную температуру. Иными словами, оно может иметь и нетепловую природу, как, например, синхротронное или мазерное. Однако это можно легко установить, определив не только «цвет», то есть частоту, на которую приходится максимум излучения, но и всю форму спектра, то есть распределение излучаемой энергии по частотам. Современная аппаратура позволяет регистрировать излучение в огромном частотном диапазоне — от гамма- до радиоволн.

Хотя общая форма спектра звезды или другого объекта уже говорит о многом (например, о природе излучения — тепловое оно или нет и если тепловое, то какой температуре соответствует), в спектре есть и значительно более емкий носитель информации — линии. При определенных условиях вещество излучает (если оно излучает само) или поглощает (если его освещает другой источник) свет лишь на определенных частотах. Конкретный набор частот зависит от индивидуального распределения энергетических уровней атомов, ионов или молекул вещества, а это означает, что по наличию той или иной спектральной линии можно сделать вывод, что в излучающем или поглощающем веществе присутствуют эти атомы и молекулы. По интенсивности линии, по ее форме, поляризации, а также по отношению интенсивностей разных линий одного и того же атома или молекулы можно определить содержание данного элемента в атмосфере звезды, степень ионизации, плотность вещества, его температуру, напряженность магнитного поля, ускорение силы тяжести... Если вещество движется, его спектр, в том числе линии, сдвигается как целое из-за эффекта Доплера: в синюю сторону спектра, если вещество приближается к нам, в красную — если вещество удаляется. Это означает, что по смещению линий относительно «лабораторного положения» мы можем делать выводы, например, о движении как звезды в целом, если смещается весь спектр, так и отдельных слоев ее атмосферы, если линии, образующиеся на различных глубинах, смещаются по-разному.

Первую карту солнечного спектра построил в начале XIX века знаменитый оптик Йозеф Фраунгофер. Наиболее заметным темным линиям в спектре Солнца он присвоил буквенные обозначения, некоторые из которых применяются астрономами до сих пор (верхний рисунок). Во второй половине XIX века выяснилось, что положение линий поглощения (темных) в спектре Солнца совпадает с положением линий излучения (светлых) в лабораторных спектрах различных химических элементов. Из сравнения приведенных здесь спектров видно, что фраунгоферовы линии h, G', F и C принадлежат водороду, а двойная линия D — натрию. Рис. с сайта optics.ifmo.ru

В спектре звезды, подобной Солнцу, количество спектральных линий (в данном случае, линий поглощения) измеряется многими тысячами, поэтому можно без преувеличения сказать, что о звездных атмосферах (где находится вещество, которое проявляет себя в виде линий) мы знаем почти всё. Почти — потому что сама теория образования спектров неидеальна, хотя и продолжает непрерывно совершенствоваться. В любом случае, излучение звезд несет в себе огромное количество информации, которую нужно только уметь расшифровать. Недаром в популярных текстах спектры любят сравнивать с отпечатками пальцев.