Нелинейные модели парной регрессии и корреляции
Различают два класса нелинейных регрессий:
1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например
· полиномы различных степеней – , ;
· равносторонняя гипербола – ;
· полулогарифмическая функция – .
2. Регрессии, нелинейные по оцениваемым параметрам, например
· степенная – ;
· показательная – ;
· экспоненциальная – .
Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных (линеаризация), а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.
Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению , оценка параметров которого при помощи МНК, приводит к системе следующих нормальных уравнений:
А после обратной замены переменных получим
(1.17)
Парабола второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.
Равносторонняя гипербола приводится к линейному уравнению простой заменой: . Система линейных уравнений при применении МНК будет выглядеть следующим образом:
(1.18)
Аналогичным образом приводятся к линейному виду зависимости , и другие.
Несколько иначе обстоит дело с регрессиями нелинейными по оцениваемым параметрам, которые делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).
К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – .
К внутренне нелинейным моделям можно, например, отнести следующие модели: , .
Среди нелинейных моделей наиболее часто используется степенная функция , которая приводится к линейному виду логарифмированием:
,
где . Т.е. МНК мы применяем для преобразованных данных:
а затем потенцированием находим искомое уравнение.
Широкое использование степенной функции связано с тем, что параметр в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности.
Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%. Формула для расчета коэффициента эластичности имеет вид:
. (1.19)
Так как для остальных функций коэффициент эластичности не является постоянной величиной, а зависит от соответствующего значения фактора , то обычно рассчитывается средний коэффициент эластичности:
. (1.20)
Приведем формулы для расчета средних коэффициентов эластичности для наиболее часто используемых типов уравнений регрессии: