Ферропорошковые муфты

 

Ферропорошковые муфты (ФПМ) предназначены в основном для гибкого сцепления валов, хотя могут применяться и для жесткого сцепления.

Конструктивное отличие ферропорошковых муфт с сухим или жидким наполнителем и электромагнитным управлением от рассмотренных ранее фрикционных муфт (ФМ) с таким же управлением заключается в том, что, во-первых, полумуфта на ведомом валу посажена жестко и, во-вторых, неизменный поэтому воздушный рабочий зазор заполнен магнитодиэлектриком. Последний представляет собой или смесь ферромагнитного порошка (стали, легированной хромом или никелем; карбонильного железа; пермаллоя и др.) с сухим диэлектриком (коллоидным графитом, тальком, тонкодисперсным стеклом и т.д.), называемым разделителем и служащим для предотвращения комкования и существенного уменьшения изнашивания муфты при высоких температурах, или взвесь ферромагнитного порошка (чаще всего карбонильного железа) в жидком диэлектрике (обычно кремнийорганическом или минеральном масле), предохраняющем порошок от окисления и комкования.

Такие наполнители-магнитодиэлектрики обладают свойством тиксотропии, т.е. способностью становиться студенистыми, все более загустевая вплоть до затвердевания по мере усиления магнитного поля, а при снятии его возвращаться в исходное состояние. Ориентируясь по силовым линиям поля, ферромагнитные частицы образуют цепочки — связи, сцепляющие ведущую и ведомую поверхности. Ведущая поверхность, увлекая ведомую, приводит ее в движение.

На рис. 16.3, а показана схема цилиндрической ФПМ с двумя концентрическими поверхностями 10 и 9. Кольцевое пространство между ними заполнено порошковой смесью 8. На внутренней — ведущей полумуфте расположена обмотка возбуждения 7, выведенная на контактные кольца 2, к которым прижимаются щетки 4. Крышки 5 и 14, изготовленные из немагнитного материала, позволяют направить большую часть магнитного потока через порошковый слой, уменьшив поток рассеяния, и снизить массу ведомой полумуфты.

На рис. 16.3, в дан эскиз магнитной системы ФПМ с неподвижной обмоткой. Такие муфты называют еще бесконтактными из-за отсутствия скользящих контактов кольцо—щетка.

ФПМ обладают важным преимуществом по сравнению ФМ, так как в них осуществляется гибкое сцепление валов: образовавшиеся при данном токе магнитные связки выдерживают определенный предельный момент сопротивления Мс; при М < Мс эти связки разрушаются, муфта начинает проскальзывать, затем связки опять восстанавливаются и рвутся и т.д. Из-за такого импульсного воздействия частоты вращения и ведущего n1 и ведомого п2 валов неравны, и последний вращается со скольжением

 

 

отличным от нуля. Таким образом, при гибком сцеплении валов n2 < n1. Проскальзывание ограничивает передаваемый момент М вплоть до остановки ведомого вала (s = l) при значительном превышении Mc над М.

 

Таким образом, ФПМ позволяет регулировать частоту вращения. Выделяемая при этом теплота рассеивается либо посредством специальной системы охлаждения, либо за счет увеличения размеров муфты и связанного с этим недоиспользования ее по М. Кроме того, на почти вертикальном участке характеристики п2(I) поддерживать требуемую частоту вращения можно только с помощью достаточно сложной системы автоматического регулирования. Следовательно, возможности ФПМ по регулированию частоты вращения в широком диапазоне ограничены.

Часто ФПМ применяют в качестве сцепных, предохранительных, динамометрических и тормозных, а благодаря линейной зависимости М(I) — ив качестве усилителей мощности для сервоприводов и следящих систем.