Прочность и вязкость дисперсных систем

Свободнодисперсные жидкообразные системы обладают вязкостью и способны течь. Вязкие тела текут при любом напряжении сдвига Pт, которое выражается уравнением

Pт= F/B, (11.4)

где F — сила вязкого сопротивления; В — площадь, на которую распространяется действие этой силы.

Течение вязких тел определяется законом Ньютона:

(11.5)

где η — коэффициент вязкости; Δy/Δt — изменение деформации во времени (скорость деформации).

Если обозначить скорость деформации через γ, то в соответствии с формулой (11.5) вязкость системы равна

η = Pτ/. (11.6)

Вязкость свободнодисперсных систем растет по мере увеличения концентрации дисперсной фазы. Присутствие частиц дисперсной фазы приводит к искажению потока жидкости вблизи этих частиц, что влияет на вязкость дисперсной системы. Если концентрация незначительна, то столкновение частиц исключается, и характер движения жидкости около одной из частиц повлияет на движение жидкости вблизи других.

 

В этих условиях для определения вязкости свободнодисперсных систем можно воспользоваться формулой Эйнштейна

η = η0(1 + кvоб); η/η0= 1 + кvоб, (11.7)

где η, η0— коэффициент вязкости свободнодисперсной системы и дисперсионной среды; к — коэффициент, зависящий от формы частиц, для сферических частиц к = 2,5; vоб— объемная концентрация дисперсной фазы.

Согласно формуле Эйнштейна вязкость раствора не зависит от размеров частиц сферической формы, если они меньше размеров прибора, определяющего вязкость, и намного больше размеров молекул дисперсионной среды. Впоследствии была показана справедливость этой формулы для частиц, имеющих форму эллипсоида, диска, гантели и других трехмерных частиц; для таких частиц изменяется лишь численное значение коэффициента к.

Формула Эйнштейна справедлива при отсутствии деформации частиц, если концентрация дисперсной фазы не превышает 6%.

При увеличении объемной концентрации сферических частиц до 30% в условиях взаимного столкновения частиц для определения вязкости можно воспользоваться следующей формулой:

η = η0(1 + 2,5vоб+ 14,7v2об). (11.8)

Эта формула отличается от формулы Эйнштейна последним членом.

При сопоставлении формул (11.7) и (11.8) видно, что по мере увеличения концентрации дисперсной фазы линейная зависимость между вязкостью и концентрацией нарушается. Тем не менее, вязкость подобных систем при данной концентрации остается постоянной. Подобные системы называют ньютоновскими.

 

Течение и вязкость неньютоновских жидкостей, которые называют еще аномальными жидкостями, зависят от внешнего воздействия (напряжения сдвига). Вязкость является величиной переменной для данной концентрации и уже не определяется ранее отмеченными соотношениями.

Рассмотрим особенности движения структурированных твердообразных систем.

Возможны четыре состояния структурированных дисперсных систем.

Первое когда 0 < Р < Рк1(Р – напряжение, Рк1— предел упругости). В этом состоянии течение отсутствует, и внешнее воздействие не может нарушить прочность системы. При дальнейшем увеличении напряжения, когда Р > Рк1, система начинает течь – второе состояние. Скорость перемещения в этом случае незначительна, связи между частицами после их разрушения успевают вновь восстановиться. Структура не разрушается, наблюдается лишь перемещение частиц относительно друг друга. Подобное перемещение называют ползучестью. Вязкость системы в условиях ползучести будет наибольшая, практически она будет соответствовать вязкости неразрушенной структуры.

Скорость движения системы в условиях ползучести определяется по формуле

v = кP/η,

где к — коэффициент, характеризующий структурные особенности дисперсной системы.

Третье состояние дисперсной системы характеризуется процессом разрушения структуры при напряжении, равном пределу прочности Рr. Необратимое разрушение структуры начинается на границе второго и третьего состояний, а на границе третьего и четвертого оно заканчивается. В этом состоянии дисперсной системы связи между частицами не восстанавливаются, вязкость снижается, а скорость движения системы увеличивается. Для этого случая скорость движения системы определяется при помощи следующей формулы:

В четвертом состоянии структура разрушена полностью (или образуются отдельные агрегаты частиц, ориентированные в потоке). Вязкость в этом состоянии становится постоянной, а ее значение — минимальным (ηmin). Скорость движения системы с разрушенной структурой увеличивается пропорционально внешнему воздействию Р. Напряжение, характеризующее потерю прочности и полное разрушение структуры, обычно обозначают через Рm.

Напряжение, при котором система начинает терять прочность называется условным (бингамовским) пределом прочности. Вязкость структурированных систем определяется скоростью движения этих систем и тем внешним воздействием, которое заставляет систему течь. Вязкость является величиной переменной и изменяется от максимального ηmaxдо минимального ηminзначения.

С увеличением внешнего воздействия происходит нарушение, а затем полное разрушение структурированной системы, что сопровождается уменьшением вязкости. Минимальная вязкость достигается тогда, когда структура связнодисперсной системы полностью разрушается.

Вязкость свободнодисперсных систем (в отсутствие деформации самих частиц) является величиной постоянной и не зависит от скорости течения и внешнего воздействия. Структурированные связнодисперсные системы обладают аномальной вязкостью, которая определяется внешним воздействием. Если такого воздействия нет или оно незначительно, то структура сохраняется и течение отсутствует.

В отличии от истинных ньютоновских жидкостей, течение которых описывается уравнениями Ньютона, а их вязкость является величиной постоянной, вязкость структурированных жидкообразных систем зависит от внешнего воздействия в интервале Рm< Р < Рr. Подобные структурированные системы называют неньютоновскими (бингамовскими) жидкостями.