ПОСТРОЕНИЕ ПЛОСКИХ ФИГУР
Построение многоугольника, равного данному, можно выполнить так, что его стороны будут располагаться параллельно соответствующим сторонам заданного многоугольника, или построенный многоугольник будет повернут в плоскости относительно заданного. И в том, и в другом случае решение
Деление. прямого угла пополам с помощью угольника с углами 45, 45 и 90° и рейсшины показано на рис. 109.
Деление прямого угла на три равные части выполняется циркулем или с помощью угольника и рейсшины. При делении угла циркулем из вершины А произвольным радиусом проводят дугу до пересечения со сторонами угла в точках В и С (рис. ПО, а). Затем тем же радиусом из точек В и С делают на дуге засечки, получают точки D и Е (рис. 110, б), которые соединяют с точкой А. Прямые АЕ и AD делят прямой угол на три равные части (рис. 110, в).
Деление прямого угла на три равные части с помощью рейсшины и угольника с углами 30, 60 и 90° показано на рис. 111.
задачи сводится к построению третьей точки относительно двух заданных.
Например, на плоскости заданы точки А и В (рис. 112, а). Требуется построить точку С, расположенную выше заданных точек на расстоянии п от точки Л, и т от точки В. Множество точек, которые находятся на расстоянии п от точки Л, располагается на окружности с центром в точке А радиусом R=n. Множество точек, которые располагаются на расстоянии т от точки В, находился на окружности с центром в точке В радиусом R1=m (рис. 112,6). В пересечении этих окружностей получают точки С и C1. Из двух полученных точек выбирают нужную. Проводить окружности полностью не обязательно, достаточно провести две короткие дуги (рис. 112, в).
На рис. 113, а задан многоугольник ABCDE. Требуется построить равный ему многоугольник A1B1C1D1E1. Построение многоугольника A1B1C1D1E1можно начать с построения любой его стороны, например стороны А1В1. Для этого параллельно стороне АВ проводят прямую и на ней циркулем откладывают отрезок A1B1 равный отрезку АВ. Затем циркулем измеряют расстояние от, точки А до точки С и этим радиусом из точки А1 проводят дугу в направлении строящейся точки С1 также от точки В измеряют расстояние до точки С и этим радиусом из точки В1 проводят дугу до пересечения с первой дугой в точке С1. Соединив точку С1 с точкой В1 прямой линией, получают вторую сторону многоугольника В1С1 (рис. 113, б). Для построения точки D1 измеряют расстояние от точки D до двух других вершин многоугольника (например А и В, или В и С, или С и А).
На рис. 113, 0 взяты расстояния от точек В и С. Дугу из точки В1 проводят радиусом, равным отрезку BD, а из точки d радиусом, равным отрезку CD. Пересечение этих дуг дает точку D1. Соединив точку D1 с точкой C1, получают сторону многоугольника C1D1 (рис. 113, в). Аналогично строят точку Е1
(рис. 113,г).