Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты

1) Информационная РНК (и-РНК).

Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.

2) Рибосомная РНК (р-РНК).

Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольши по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более.

3) Транспортная РНК (т-РНК).

Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).

4) Минорные (малые) РНК.

Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.

5) Рибозимы.

Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).

6) Вирусные РНК.

Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК.

5)А)На данный момент, значение уникальных последовательностей нуклеотидов не установлено. Существует множество теорий, самая распространённая из них говорит о том, что уникальные последовательности играют роль в упаковке ДНК хромосомы, обмена генами а так же участвуют в процессах трансляции и транскрипции.

Б) К фракции со средним числом повторов относятся некоторые структурные гены, например кодирующие после­довательность аминокислот в молекулах гистонов или нуклеотидов в рРНК и тРНК. По расчетам в клетке человека находится не менее 450 генов рРНК. Наличие повторов повышает количество единиц тран­скрипции определенной информации и, возможно, служит фактором защиты генов, жизненно важных для всех клеток, против мутаций. В эту же группу входит и часть регуляторных генов.

В) Фракция многократно повторяющихся последователь­ностей образована нетранскрибируемой сателлитной (спутничной) ДНК. Роль ее в физиологии наследственного материала неизвестна. Она, возможно, выполняет функцию спейсеров, т. е. фрагментов, разделяющих структурные и регуляторные гены или обусловливает взаимоузнавание гомологичных хромосом. В ДНК хромосом человека, по ориентировочным данным, уникальные последовательности состав­ляют более 56%,

Г) фрагменты ДНК, имеющие специальную структурную организацию, которые обладают способностью перемещаться в геноме как в пределах одной хромосомы, так и между хромосомами.Встраиваясь в различныеучастки хромосом, мобильные генетические элементы изменяют активность генов, вызывают различные типымутаций, способствуя нестабильности и изменчивости генома. Мобильные генетические элементы эукариотчасто называют также транспозонами.

6) Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

Св-ва ген. кода:

1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

4) Между генами имеются «знаки препинания» (УАА, УАГ, УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

5) Внутри гена нет знаков препинания.

6) Код универсален. Генетический код един для всех живых на земле существ.

Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

1) Связывание РНК-полимеразы с промотором,

2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

Описанный ниже эксперимент показывает, каким образом был расшифрован генетический код. Раствор ферментов, полученный из бактериальных клеток и добавленный к раствору, содержащему все 20 аминокислот, вызывает синтез полипептидной цепи, состоящей только из остатков аминокислоты фенилаланина, если к нему добавить синтетическую РНК, состоящую из полиурацила (т. е. последовательность iJ-U-U-U-...). Следовательно, кодоном для фенилаланина служит иии, как показано в табл. 15.1. Основную работу по расшифровке генетического кода расшифровке генетического кодавыполнили американские ученые М. У. Ниренберг, X. Г. Корана и Р. Г. Холли со своими сотрудниками при этом они использовали ферменты, открытые А. Корнбергом и С. Очоа.